期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
1
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(catboost) 第三代非支配排序遗传算法(NSGA-Ⅲ) 盾构姿态 多目标优化 重要性排序
原文传递
基于CatBoost-MOEAD的大直径泥水盾构施工多目标预测优化
2
作者 吴贤国 刘俊 +2 位作者 苏飞鸣 陈虹宇 冯宗宝 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期57-64,共8页
为有效优化盾构施工参数,实现在大直径泥水盾构掘进过程中安全、高效和节能的目标,提出分类助推(CatBoost)和基于分解的多目标进化算法(MOEAD)相结合的混合智能算法;综合考虑盾构施工参数与地质条件,以主要的盾构施工参数为研究对象,选... 为有效优化盾构施工参数,实现在大直径泥水盾构掘进过程中安全、高效和节能的目标,提出分类助推(CatBoost)和基于分解的多目标进化算法(MOEAD)相结合的混合智能算法;综合考虑盾构施工参数与地质条件,以主要的盾构施工参数为研究对象,选择地表沉降、贯入度和掘进比能为预测和控制目标;优化调控选择的盾构施工参数,并以武汉市轨道交通某号线为例,验证该混合算法的有效性。结果表明:采用CatBoost算法建立的预测模型在大直径泥水盾构上表现出来的预测性能良好,对3个控制目标的拟合精度(R 2)均达到0.9以上;预测模型的重要性排序表明:大直径泥水盾构的总推进力和推进速度对地表沉降、贯入度和掘进比能有显著影响;所提出的CatBoost-MOEAD混合智能算法对3个控制目标的优化效果明显,地表沉降、贯入度和掘进比能分别达到12.35%、7.47%和10.70%的优化幅度,并给出相应盾构施工参数的控制范围。 展开更多
关键词 大直径泥水盾构 分类助推(catboost) 基于分解的多目标进化算法(MOEAD) 多目标优化 地表沉降
原文传递
基于CatBoost-NSGA-Ⅲ的盾构隧道施工参数分析及优化控制
3
作者 陈礼博 张明书 +2 位作者 陈海勇 吴贤国 曹源 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1587-1598,共12页
由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面... 由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面考虑掘进效率、成本、安全风险等因素的基础上,选择以推进速度、掘进比能、刀具磨损量为目标,构建施工参数智能控制决策系统。首先,通过CatBoost回归模型预测盾构隧道推进速度、掘进比能和刀具磨损量,得到控制目标的适应度函数;然后,基于CatBoost预测模型构建的适应度函数,利用CatBoost-NSGA-Ⅲ进行施工参数的多目标优化;最后,通过模糊决策法从多个Pareto最优解集中选出最佳的施工参数组合,为隧道盾构掘进参数智能预测与优化提供参考。结果表明:1)Catboost可以进行模型精准预测,拟合优度R2大于0.9,均方根误差RMSE和平均绝对误差MAE较小;2)Catboost-NSGA-Ⅲ多目标优化,模糊决策法确定最优方案。经过优化,相较于实测数据的平均值,掘进比能和刀具磨损量分别降低5.3%和13.5%、掘进速度提升6.3%,为盾构隧道的智能化掘进控制和管理决策提供依据。 展开更多
关键词 盾构施工 推进速度 掘进比能 刀具磨损量 施工参数 多目标优化 catboost-NSGA-Ⅲ算法
下载PDF
基于Boosting算法的文本自动分类器设计 被引量:13
4
作者 董乐红 耿国华 周明全 《计算机应用》 CSCD 北大核心 2007年第2期384-386,共3页
Boosting算法是目前流行的一种机器学习算法。采用一种改进的Boosting算法Adaboost.MH^(KR)作为分类算法,设计了一个文本自动分类器,并给出了评估方法和结果。评价表明,该分类器有很好的分类精度。
关键词 文本分类 机器学习 boosting算法
下载PDF
基于Boosting机制的Naive Bayesian文本分类器 被引量:3
5
作者 崔林 付克明 +1 位作者 石生树 宋瀚涛 《计算机工程与应用》 CSCD 北大核心 2005年第8期31-33,67,共4页
Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3... Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3种破坏Naive Bayesian学习器稳定性的方法。第一种方法改变训练集样本,第二种方法采用随机属性选择社团,第三种方法是在Boosting的每次迭代中利用不同的文本特征提取方法建立不同的特征词集。实验表明,这几种方法各有其优缺点,但都比原有方法准确、高效。 展开更多
关键词 boosting NAIVE BAYESIAN CLASSIFIER 文本分类 文本挖掘 数据挖掘
下载PDF
Boosting算法在文本自动分类中的应用 被引量:7
6
作者 肖江 张亚非 《解放军理工大学学报(自然科学版)》 EI 2003年第2期25-28,共4页
随着网络信息的迅猛发展 ,如何快捷、准确地识别和获取有用信息显得更为重要。文本自动分类系统是信息处理的重要研究方向 ,它是指在给定的分类体系下 ,根据文本的内容自动判别文本类别的过程。Boosting算法是一种新兴的机器学习算法。... 随着网络信息的迅猛发展 ,如何快捷、准确地识别和获取有用信息显得更为重要。文本自动分类系统是信息处理的重要研究方向 ,它是指在给定的分类体系下 ,根据文本的内容自动判别文本类别的过程。Boosting算法是一种新兴的机器学习算法。在文本分类中应用 Boosting算法经过试验证明是有效的 。 展开更多
关键词 文本自动分类系统 自然语言处理 boosting算法 机器学习 文本类别 分类器
下载PDF
基于Boosting算法集成遗传模糊分类器的文本分类 被引量:1
7
作者 罗军 况夯 《计算机应用》 CSCD 北大核心 2008年第9期2386-2388,2391,共4页
提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类... 提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类的样本。实验结果表明,该文本分类算法具有良好分类的性能。 展开更多
关键词 模糊分类 特征选择 潜在语义索引 boosting算法 文本分类
下载PDF
GPR、XGBoost和CatBoost模拟江西地区参考作物蒸散量的适应性研究 被引量:6
8
作者 刘小强 代智光 +3 位作者 吴立峰 张富仓 董建华 陈志月 《灌溉排水学报》 CSCD 北大核心 2021年第1期91-96,共6页
【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公... 【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公式的计算结果作为对照,建立了计算ET0的高斯过程回归(GPR)、极限梯度提升(XGBoost)和梯度提升决策树(CatBoost)模型,并分别与经验模型进行比较。【结果】各气象参数对机器学习模型模拟ET0的精度影响由大到小依次为:Rs、Tmax和Tmin、RH、U2,且采用Tmax、Tmin、Rs和RH气象参数组合的机器学习模型(RMSE<0.2mm/d)模拟ET0精度高。此外,3种机器学习模型在有限的气象数据时具有较好的适用性,且优于传统经验模型,其中GPR和CatBoost模型的预测精度高,但GPR模型稳定性最好。【结论】考虑到所研究模型调参的复杂性、预测精度和稳定性,GPR模型可作为江西地区参考作物蒸散量模拟的推荐方法。 展开更多
关键词 参考作物蒸散量 高斯过程回归 极限提升增强 梯度提升决策树 经验模型
下载PDF
基于CatBoost算法的中青年颈动脉粥样硬化预测方法 被引量:1
9
作者 丁瑶 张小玉 +4 位作者 许杨 高理升 孙怡宁 王世军 马祖长 《北京生物医学工程》 2020年第5期470-476,522,共8页
目的探究CatBoost算法在中青年颈动脉粥样硬化预测中的应用价值,为中青年颈动脉粥样硬化早期筛查提供一种可行的技术手段。方法以2016—2018年期间在北京某医院体检中心进行健康体检的2258位中青年为研究对象,根据颈动脉彩超检查结果诊... 目的探究CatBoost算法在中青年颈动脉粥样硬化预测中的应用价值,为中青年颈动脉粥样硬化早期筛查提供一种可行的技术手段。方法以2016—2018年期间在北京某医院体检中心进行健康体检的2258位中青年为研究对象,根据颈动脉彩超检查结果诊断是否有颈动脉粥样硬化。使用下采样技术对样本进行平衡处理。分析变量重要性进行特征选择,构建CatBoost模型。利用Logistic回归和人工神经网络两类机器学习算法构建模型,并与CatBoost模型进行比较分析。以灵敏度、特异性、准确率及受试者工作特征(receiver operating characteristic,ROC)曲线下的面积(area under the ROC curve,AUC)作为模型的评价指标。结果CatBoost模型在测试集上的灵敏度、特异性、准确率和AUC均最高,分别为82.8%、96.7%、90.3%、0.92。Logistic回归模型和神经网络模型的灵敏度、特异性和准确率均介于62.4%~73.3%之间,AUC均介于0.72~0.78之间。重要性分析表明影响中青年颈动脉粥样硬化最重要的三个因素依次是年龄、腰高比、高密度脂蛋白胆固醇。结论CatBoost算法在中青年颈动脉粥样硬化预测中的应用具有一定的可行性。相比于其他传统算法,具有较高的诊断价值。 展开更多
关键词 颈动脉粥样硬化 特征选择 catboost LOGISTIC回归 人工神经网络
下载PDF
Estimating Daily Dew Point Temperature Based on Local and Cross-StationMeteorological Data Using CatBoost Algorithm 被引量:1
10
作者 Fuqi Yao Jinwei Sun Jianhua Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期671-700,共30页
Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the... Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the applicability of local Tdew algorithms at regional scales.This study evaluated the performance of a new machine learning algorithm,i.e.,gradient boosting on decision trees with categorical features support(Cat Boost)to estimate daily Tdew using limited local and cross-station meteorological data.The random forests(RF)algorithm was also assessed for comparison.Daily meteorological data from 2016 to 2019,including maximum,minimum and average temperature(Tmax,Tmin and Tmean),maximum,minimum and average relative humidity(RHmax,RHmin and RHmean),maximum,minimum and average global solar radiation(Rsmax,Rsmin and Rsmean)from three weather stations in Hunan of China were used to evaluate the CatBoost and RF algorithms.The results showed that both algorithms achieved satisfactory estimation accuracy at the target stations(on average RMSE=1.020℃,R^(2)=0.969,MAE=0.718℃and NRMSE=0.087)in the absence of complete meteorological parameters(with only temperature data as input).The Cat Boost algorithm(on average RMSE=1.900℃and R^(2)=0.835)was better than the RF algorithm(on average RMSE=2.214℃andR^(2)=0.828).The accuracy and stability of the CatBoost and RF algorithms were positively correlated with the number of input parameters,and the three-parameter algorithms achieved higher estimation accuracy than the two-parameter algorithms.The developed methodology is helpful to predict Tdew at regional scale. 展开更多
关键词 Dew point temperature categorical boosting random forests cross-station accuracy
下载PDF
基于不同提升树模型的河道水沙运移规律与模拟研究 被引量:2
11
作者 张宸宇 《水资源开发与管理》 2023年第1期28-35,共8页
为找出河道水沙运移模拟的最优模型,以梯度提升决策树(CatBoost)模型为基础,在鲸鱼算法(WOA)中引入Logistic映射、自适应权重和交叉变异处理,得出优化鲸鱼算法(MWOA),构建了MWOA-CatBoost模型,为验证模型精度,将MWOA-CatBoost模型与3种... 为找出河道水沙运移模拟的最优模型,以梯度提升决策树(CatBoost)模型为基础,在鲸鱼算法(WOA)中引入Logistic映射、自适应权重和交叉变异处理,得出优化鲸鱼算法(MWOA),构建了MWOA-CatBoost模型,为验证模型精度,将MWOA-CatBoost模型与3种优化CatBoost模型和2种传统提升树模型(极端梯度提升树XGBoost、自适应提升树Ada Boost)进行了对比,结果表明,MWOA-CatBoost模型在所有模型中精度最高,可作为河道水沙模拟的推荐模型使用。 展开更多
关键词 河道水沙 梯度提升决策树 鲸鱼算法 优化catboost模型
下载PDF
基于K-Means和XG-Boost算法的“两步式”船型分类映射
12
作者 王绍函 韩懿 +1 位作者 王翔宇 任飞扬 《上海船舶运输科学研究所学报》 2023年第3期28-34,53,共8页
由于当前的船舶分类较为单一,不同类型船舶的尺度和航行油耗等特征参数存在很大差异,采用相同的油耗标准衡量不同类型船舶的油耗会产生很大偏差。为有效解决该问题,以某公司的干散货船、集装箱船和油船为研究对象,提出一种“两步式”船... 由于当前的船舶分类较为单一,不同类型船舶的尺度和航行油耗等特征参数存在很大差异,采用相同的油耗标准衡量不同类型船舶的油耗会产生很大偏差。为有效解决该问题,以某公司的干散货船、集装箱船和油船为研究对象,提出一种“两步式”船型分类方法。采用K-Means算法对该公司内部船舶的9个属性进行分类,并基于肘部法则确定分类数量;根据得到的簇的数量,采用K-Means模型对船舶进行分类,并打上分类标签。针对该公司外部船舶属性数据缺失严重、数据质量较差的情况,基于上述分类标签,采用XG-Boost算法对该公司内部的船舶进行二次训练,使船舶分类模型具有处理数据缺失问题和提供分类概率的能力。实际应用结果表明,该“两步式”船型分类方法能对公司内外船舶能耗表现一致的船舶进行合理分类,并建立公司内外船舶的映射关系。 展开更多
关键词 K-MEANS算法 XG-Boost算法 量化分析 船舶分类 机器学习
下载PDF
Web网页信息文本分类的研究 被引量:5
13
作者 李净 袁小华 沈晓晶 《计算机工程与设计》 CSCD 北大核心 2008年第23期6026-6028,共3页
面对海量的信息如何挖掘出有用的知识是当前研究的热点问题,对Web文本进行分类预处理,可在一定程度上解决此问题。针对Web文档的多主题特性,采用了多分类器模型,根据Web文档具有结构信息的特点,提出了系统的分类框架,对于短小文档采用Bo... 面对海量的信息如何挖掘出有用的知识是当前研究的热点问题,对Web文本进行分类预处理,可在一定程度上解决此问题。针对Web文档的多主题特性,采用了多分类器模型,根据Web文档具有结构信息的特点,提出了系统的分类框架,对于短小文档采用Boosting和Web文档结构Bayesian分类模型,而对于长文档采用Boosting和综合Bayesian分类模型。实验结果表明,此分类框架具有较好的分类效果。 展开更多
关键词 WEB文本分类 多主题 多分类器 boosting算法 综合Bayesian分类法
下载PDF
中文文本分类器的设计 被引量:10
14
作者 陆建江 张文献 《计算机工程与应用》 CSCD 北大核心 2002年第15期49-51,共3页
文本分类是指在给定分类体系下,根据文本的内容自动确定文本类型的过程。文章应用球形的k-均值算法确定每个文本的类标签,并通过Boosting算法构建分类器。构建的分类器具有以下特点:分类器的设计针对未知类标签的语料库,实用性好;分类... 文本分类是指在给定分类体系下,根据文本的内容自动确定文本类型的过程。文章应用球形的k-均值算法确定每个文本的类标签,并通过Boosting算法构建分类器。构建的分类器具有以下特点:分类器的设计针对未知类标签的语料库,实用性好;分类器能随着语料库中文本的变化而增加新的类,具有很好的可扩展性;分类器基于Boosting算法,具有很好的分类精度。 展开更多
关键词 中文文本分类器 设计 机器学习 boosting算法 自然语言处理
下载PDF
利用置信度重取样的SemiBoost-CR分类模型 被引量:5
15
作者 唐焕玲 鲁明羽 《计算机科学与探索》 CSCD 2011年第11期1048-1056,共9页
结合半监督学习和集成学习方法,提出了一种基于置信度重取样的SemiBoost-CR分类模型。给出了基于标注近邻与未标注近邻的置信度计算公式,按照置信度重采样,不仅选取一定比例置信度较高的未标注样本,而且选取一定比例置信度较低的未标注... 结合半监督学习和集成学习方法,提出了一种基于置信度重取样的SemiBoost-CR分类模型。给出了基于标注近邻与未标注近邻的置信度计算公式,按照置信度重采样,不仅选取一定比例置信度较高的未标注样本,而且选取一定比例置信度较低的未标注样本,分别以不同的策略加入到已标注的训练样本集。引入置信度高的未标注样本,用以提高基分类器的正确性(accuracy);而引入置信度低的未标注样本,目的则是进一步增加基分类器间的差异性(diversity)。对比实验表明,SemiBoost-CR分类模型能够有效提升Naive Bayesian文本分类器的性能。 展开更多
关键词 boosting 半监督分类 朴素贝叶斯 置信度 重取样
下载PDF
基于CatBoost-MOEAD的大直径泥水盾构姿态多目标预测与优化
16
作者 吴贤国 刘俊 +1 位作者 王静怡 覃亚伟 《中国安全科学学报》 CAS 2024年第10期50-57,共8页
为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输... 为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输出参数,利用CatBoost算法构建输入参数与输出参数之间的非线性映射关系;采用沙普利加性解释法(SHAP)分析输入参数对盾构姿态的影响;结合多目标优化算法构建CatBoost-MOEAD盾构姿态多目标优化模型,将所提模型运用到武汉长江大直径泥水盾构隧道工程中,分析验证所提方法的适用性和有效性。结果表明:CatBoost预测模型能够高效地预测大直径泥水盾构的姿态,其中6个盾构姿态目标的决定系数范围为0.931~0.974,均方根误差范围为0.030~0.880,误差范围为0.039~1.057;对盾构姿态影响较大的施工参数中推进组推力对盾构姿态的影响最为显著;通过研发的CatBoost-MOEAD盾构姿态多目标优化方法,盾构姿态的优化效果显著,优化率可达38.86%。 展开更多
关键词 类别提升(catboost) 基于分解的多目标优化算法(MOEAD) 大直径泥水盾构 盾构姿态 多目标优化 沙普利加性解释法(SHAP)
原文传递
一个中文文本自动分类器的设计
17
作者 董乐红 耿国华 周明全 《计算机应用与软件》 CSCD 北大核心 2008年第4期14-16,共3页
Boosting算法是目前流行的一种机器学习算法。采用Boosting家族的Adaboost.MH算法作为分类算法,设计了一个中文文本自动分类器,并给出了评估方法和结果。评价表明,该分类器和SVM的分类精度相当,而较基于其他分类算法的分类器有更好的分... Boosting算法是目前流行的一种机器学习算法。采用Boosting家族的Adaboost.MH算法作为分类算法,设计了一个中文文本自动分类器,并给出了评估方法和结果。评价表明,该分类器和SVM的分类精度相当,而较基于其他分类算法的分类器有更好的分类精度。 展开更多
关键词 文本分类 机器学习 boosting算法
下载PDF
文本分类中连续属性离散化方法的研究
18
作者 董乐红 耿国华 周明全 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2222-2225,共4页
针对机器学习领域的一些分类算法不能处理连续属性的问题,提出一种基于词出现和信息增益相结合的多区间连续属性离散化方法.该算法定义了一个离散化过程,离散化了采用传统信息检索的加权技术生成的非二值特征词空间,然后判断原特征空间... 针对机器学习领域的一些分类算法不能处理连续属性的问题,提出一种基于词出现和信息增益相结合的多区间连续属性离散化方法.该算法定义了一个离散化过程,离散化了采用传统信息检索的加权技术生成的非二值特征词空间,然后判断原特征空间中每个特征词属于或不属于某给定子区间,将问题转换成二值表示方式,以使得这些分类算法适用于连续属性值.实验结果表明,该算法离散过程简单高效,预测精度高,可理解性强. 展开更多
关键词 机器学习 文本分类 信息增益 连续属性离散化 boosting算法
下载PDF
基于最大熵的文本分类算法的改进
19
作者 贺兴时 杨成成 《西安石油大学学报(自然科学版)》 CAS 北大核心 2009年第6期77-79,共3页
基于最大熵模型的文本分类算法对不同测试文档的训练结果相差较大.利用Boosting机制改进基于最大熵模型的分类算法,以提高该分类算法的稳定性.实验结果表明,该改进方法可以有效改善基于最大熵模型分类算法的稳定性,且分类精度也有一定... 基于最大熵模型的文本分类算法对不同测试文档的训练结果相差较大.利用Boosting机制改进基于最大熵模型的分类算法,以提高该分类算法的稳定性.实验结果表明,该改进方法可以有效改善基于最大熵模型分类算法的稳定性,且分类精度也有一定的提高. 展开更多
关键词 文本分类算法 最大熵模型 boosting算法 稳定性
下载PDF
Adaptive Error Curve Learning Ensemble Model for Improving Energy Consumption Forecasting 被引量:1
20
作者 Prince Waqas Khan Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2021年第11期1893-1913,共21页
Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptiv... Despite the advancement within the last decades in the field of smart grids,energy consumption forecasting utilizing the metrological features is still challenging.This paper proposes a genetic algorithm-based adaptive error curve learning ensemble(GA-ECLE)model.The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach.A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy.This approach combines three models,namely CatBoost(CB),Gradient Boost(GB),and Multilayer Perceptron(MLP).The ensembled CB-GB-MLP model’s inner mechanism consists of generating a meta-data from Gradient Boosting and CatBoost models to compute the final predictions using the Multilayer Perceptron network.A genetic algorithm is used to obtain the optimal features to be used for the model.To prove the proposed model’s effectiveness,we have used a four-phase technique using Jeju island’s real energy consumption data.In the first phase,we have obtained the results by applying the CB-GB-MLP model.In the second phase,we have utilized a GA-ensembled model with optimal features.The third phase is for the comparison of the energy forecasting result with the proposed ECL-based model.The fourth stage is the final stage,where we have applied the GA-ECLE model.We obtained a mean absolute error of 3.05,and a root mean square error of 5.05.Extensive experimental results are provided,demonstrating the superiority of the proposed GA-ECLE model over traditional ensemble models. 展开更多
关键词 Energy consumption meteorological features error curve learning ensemble model energy forecasting gradient boost catboost multilayer perceptron genetic algorithm
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部