期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries
1
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type cathode materials Sodium-ion batteries Layered structure
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
2
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary cathode materials Electrochemical Performance
下载PDF
Selenium-doped cathode materials with polyaniline skeleton for lithium-organosulfur batteries
3
作者 Rong Zou Wenwu Liu Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期148-157,共10页
Sulfur-containing polymer(SCP)is considered as an outstanding cathode material for lithium-sulfur batteries.However,undesirable soluble polysulfides may shuttle in electrolyte,concluding long-chain Li_(2)S_(n)(n>4)... Sulfur-containing polymer(SCP)is considered as an outstanding cathode material for lithium-sulfur batteries.However,undesirable soluble polysulfides may shuttle in electrolyte,concluding long-chain Li_(2)S_(n)(n>4)and short-chain Li2Sn(n≤4),as well as the sluggish conversion kinetics are yet to be solved to enhance the performance of lithium-sulfur batteries.Here Se-doped sulfurized polyaniline with adjusted sulfur-chain-S_(x)-(x≤6)contribute to ensure the absence of long-chain polysulfides,and the skeleton with quinoid imine can endow strongly adsorption towards short-chain polysulfides by the reversible transition between deprotonated/protonated imine(-NH^(+)=and-N=),which offer double insurance against suppressing“shuttle effect”.Furthermore,Se atoms are doped into sulfurized polysulfides to accelerate the redox conversion and take a frontier orbital theory-oriented view into catalytic mechanism.Se-doped sulfurized polyaniline as active materials for lithium-organosulfur batteries delivers good electrochemical performance,including high rate,reversible specific capacity(680 mA h g^(-1)at 0.1 A g^(-1)),and lower capacity decay rate only of 0.15%with near 100%coulomb efficiency during long-term cycle.This work provides a valuable guiding ideology and promising solution for the chemistry-oriented structure design and practical application for lithium-organosulfur batteries. 展开更多
关键词 Lithium-organosulfur batteries Selenium-doped cathode materials Sulfur-containing polymer Frontier orbital theory
下载PDF
Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries
4
作者 Yongheng Si Kun Bai +4 位作者 Yaxin Wang Han Lu Litong Liu Ziyan Long Yujuan Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期537-546,I0012,共11页
Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control th... Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application. 展开更多
关键词 Ion exchange Defective cathode materials Oxygen vacancies Initial coulombic efficiency DFT calculations
下载PDF
Organic cathode materials for rechargeable magnesium-ion batteries:Fundamentals, recent advances, and approaches to optimization
5
作者 Xiaoqian He Ruiqi Cheng +6 位作者 Xinyu Sun Hao Xu Zhao Li Fengzhan Sun Yang Zhan Jianxin Zou Richard M.Laine 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4359-4389,共31页
Rechargeable magnesium-ion batteries(MIBs) are favorable substitutes for conventional lithium-ion batteries(LIBs) because of abundant magnesium reserves, a high theoretical energy density, and great inherent safety. O... Rechargeable magnesium-ion batteries(MIBs) are favorable substitutes for conventional lithium-ion batteries(LIBs) because of abundant magnesium reserves, a high theoretical energy density, and great inherent safety. Organic electrode materials with excellent structural tunability,unique coordination reaction mechanisms, and environmental friendliness offer great potential to promote the electrochemical performance of MIBs. However, research on organic magnesium battery cathode materials is still preliminary with many significant challenges to be resolved including low electrical conductivity and unwanted but severe dissolution in useful electrolytes. Herein, we provide a detailed overview of reported organic cathode materials for MIBs. We begin with basic properties such as charge storage mechanisms(e.g., n-, p-, and bipolartype), moving to recent advances in various types of organic cathodes including carbonyl-, nitrogen-, and sulfur-based materials. To shed light on the diverse strategies targeting high-performance Mg-organic batteries, elaborate summaries of various approaches are presented.Generally, these strategies include molecular design, polymerization, mixing with carbon, nanosizing and electrolyte/separator optimization.This review provides insights on exploring high-performance organic cathodes in rechargeable MIBs. 展开更多
关键词 Mg-organic batteries Organic cathode materials Energy storage Charge storage mechanism Electrochemical optimization approaches
下载PDF
Perspectives in Electrochemical in situ Structural Reconstruction of Cathode Materials for Multivalent-ion Storage
6
作者 Jing Huang Xuefang Xie +2 位作者 Kun Liu Shuquan Liang Guozhao Fang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期72-86,共15页
Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the s... Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section. 展开更多
关键词 cathode materials electrochemical activation in situ reconstruction multivalent-ion batteries
下载PDF
Enhanced Electrochemical Performances of Ni Doped Cr_(8)O_(21)Cathode Materials for Lithium-ion Batteries
7
作者 TANG Guoli LIU Hanxing +2 位作者 YU Zhiyong YANG Bo KONG Linghua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1242-1247,共6页
Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that th... Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that the discharge capacities of the samples depend on the nickel contents,which increases firstly and then decreases with increasing Ni contents.Optimized Ni_(0.5)Cr_(7.5)O_(21)delivers a first capacity up to 392.6 m Ah·g^(-1)at 0.1C.In addition,Ni doped sample also demonstrates enhanced cycling stability and rate capability compared with that of the bare Cr_(8)O_(21).At 1 C,an initial discharge capacity of 348.7 m Ah·g^(-1)was achieved for Ni_(0.5)Cr_(7.5)O_(21),much higher than 271.4 m Ah·g^(-1)of the un-doped sample,with an increase of more than 28%.Electrochemical impedance spectroscopy results confirm that Ni doping reduces the growth of interface resistance and charge transfer resistance,which is conducive to the electrochemical kinetic behaviors during charge-discharge. 展开更多
关键词 Cr_(8)O_(21) cathode material DOPING electrochemical performances lithium-ion batteries
原文传递
CoSnO_(3)/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries
8
作者 Shuainan Guo Mingquan Liu +3 位作者 Haoyi Yang Xin Feng Ying Bai Chuan Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期883-892,共10页
Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-elec... Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs. 展开更多
关键词 Rechargeable aluminum batteries Mixed transition-metal oxides CoSnO_(3)/C cathode material Oxygen vacancy
下载PDF
Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials:A comparison study 被引量:13
9
作者 Zhenpo Wang Jing Yuan +4 位作者 Xiaoqing Zhu Hsin Wang Lvwei Huang Yituo Wang Shiqi Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期484-498,共15页
In this paper,overcharge behaviors and thermal runaway(TR)features of large format lithium-ion(Liion)cells with different cathode materials(LiFePO4(LFP),Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2)(NCM111),Li[Ni_(0.6)Co_(0.2)Mn_... In this paper,overcharge behaviors and thermal runaway(TR)features of large format lithium-ion(Liion)cells with different cathode materials(LiFePO4(LFP),Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2)(NCM111),Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_(2)(NCM622)and Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM811))were investigated.The results showed that,under the same overcharge condition,the TR of LFP Li-ion cell occurred earlier compared with the NCM Li-ion cells,indicating its poor overcharge tolerance and high TR risk.However,when TR occurred,LFP Li-ion cell exhibited lower maximum temperature and mild TR response.All NCM Liion cells caught fire or exploded during TR,while the LFP Li-ion cell only released a large amount of smoke without fire.According to the overcharge behaviors and TR features,a safety assessment score system was proposed to evaluate the safety of the cells.In short,NCM Li-ion cells have better performance in energy density and overcharge tolerance(or low TR risk),while LFP Li-ion cell showed less severe response to overcharging(or less TR hazards).For NCM Li-ion cells,as the ratio of nickel in cathode material increases,the thermal stability of the cathode materials becomes poorer,and the TR hazards increase.Such a comparison study on large format Li-ion cells with different cathode materials can provide deeper insights into the overcharge behaviors and TR features,and provide guidance for engineers to reasonably choose battery materials in automotive applications. 展开更多
关键词 Lithium-ion battery cathode materials OVERCHARGE Thermal runaway Overcharge tolerance Safety assessment
下载PDF
The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries 被引量:5
10
作者 Daozhong Hu Yuefeng Su +7 位作者 Lai Chen Ning Li Liying Bao Yun Lu Qiyu Zhang Jing Wang Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期1-8,共8页
Ni-rich cathode materials show great potential of applying in high-energy lithium ion batteries,but their inferior cycling stability hinders this process.Study on the electrode/electrolyte interfacial reaction is indi... Ni-rich cathode materials show great potential of applying in high-energy lithium ion batteries,but their inferior cycling stability hinders this process.Study on the electrode/electrolyte interfacial reaction is indispensable to understand the capacity failure mechanism of Ni-rich cathode materials and further address this issue.This work demonstrates the domain size effects on interfacial side reactions firstly,and further analyzes the inherent mechanism of side reaction induced capacity decay through comparing the interfacial behaviors before and after MgO coating.It has been determined that LiF deposition caused thicker SEI films may not increase the surface film resistance,while HF erosion induced surface phase transition will increase the charge transfer resistance,and the later plays the dominant factor to declined capacity of Ni-rich cathode materials.This work suggests strategies to suppress the capacity decay of layered cathode materials and provides a guidance for the domain size control to match the various applications under different current rates. 展开更多
关键词 Lithium-ion batteries Ni-rich cathode materials LiF deposition HF erosion Failure mechanism
下载PDF
Mixed polyanion cathode materials:Toward stable and high-energy sodium-ion batteries 被引量:4
11
作者 Along Zhao Yongjin Fang +2 位作者 Xinping Ai Hanxi Yang Yuliang Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期635-648,共14页
Sodium-ion batteries(SIBs)are considered as one of the most fascinating alternatives to lithium-ion batteries for grid-scale energy storage applications because of the low cost and wide abundance of sodium resources.A... Sodium-ion batteries(SIBs)are considered as one of the most fascinating alternatives to lithium-ion batteries for grid-scale energy storage applications because of the low cost and wide abundance of sodium resources.Among various cathode materials,mixed polyanion compounds come into the spotlight as promising electrode materials due to their superior electrochemical properties,such as high working voltage,long cycling stability,and facile reaction kinetics.In this review,we summarize the recent development in the exploration of different mixed polyanion cathode materials for SIBs.We provide a comprehensive understanding of the structure-composition-performance relationship of mixed polyanion cathode materials together with the discussion of their sodium storage mechanisms.It is anticipated that further innovative works on the material design of advanced cathode materials for batteries can be inspired. 展开更多
关键词 Mixed polyanion compounds cathode materials POLYANIONS Energy storage Sodium-ion batteries
下载PDF
Nitrogen-doped carbon stabilized Li Fe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries 被引量:3
12
作者 Haifeng Yu Zhaofeng Yang +2 位作者 Huawei Zhu Hao Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1935-1940,共6页
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P... Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries. 展开更多
关键词 cathode materials High power density CARBON Long cycle life Li-ion batteries
下载PDF
Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating 被引量:3
13
作者 Wei Liu Jinxing Li +2 位作者 Hanying Xu Jie Li Xinping Qiu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期917-924,共8页
Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,c... Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed. 展开更多
关键词 cobalt-free lithium-rich cathode materials lithium fluoride coating cycle stability DISSOLUTION
下载PDF
Thermodynamically Revealing the Essence of Order and Disorder Structures in Layered Cathode Materials 被引量:4
14
作者 ZHENG Ze WENG Mou-Yi +3 位作者 YANG Lu-Yi HU Zong-Xiang CHEN Zhe-Feng PAN Feng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第12期2020-2026,共7页
Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elem... Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elements co-exist in the layer(e.g. Ni, Co and Mn). By contrast, the configuration tends to be ordered if the elements are Li and Mn. Here, by using special quasi-random structures(SQS) algorithm, the essential reasons of the ordering in a promising Li-rich Mn-based cathode material Li2MnO3 are investigated. The difference of internal energy and entropy between ordered and disordered materials is calculated. As a result, based on the Gibbs free energy, it is found that Li2MnO3 should have an ordered structure in TM layer. In comparison, structures with Ni-Mn ratio of 2:1 are predicted to have a disordered TM layer, because the entropy terms have larger impact on the structural ordering than internal energy terms. 展开更多
关键词 ENTROPY special quasi-random structures(SQS) layered cathode materials Gibbs free energy
下载PDF
Plasma assisted synthesis of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) cathode materials with good cyclic stability at subzero temperatures 被引量:2
15
作者 Fanbo Meng Renzong Hu +3 位作者 Zhiwei Chen Liang Tan Xuexia Lan Bin Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期46-55,共10页
Layered Ni-rich cathode materials,LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),are synthesized via solid reaction assisted with a plasma milling pretreatment,which is resulted in lowering sintering temperatures for solid p... Layered Ni-rich cathode materials,LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622),are synthesized via solid reaction assisted with a plasma milling pretreatment,which is resulted in lowering sintering temperatures for solid precursors.The plasma milling pretreated NCM622 cathode material sintered at 780℃(named as PM-780)demonstrates good cycling stability at both room and subzero temperatures.Specifically,the PM-780 cathode delivers an initial discharge capacity of 171.2 mAh g^(-1) and a high capacity retention of 99.7%after 300 cycles with current rate of 90 mA g^(-1) at 30℃,while stable capacities of 120.3 and 94.0 m Ah g^(-1) can be remained at-10℃and-20℃in propylene carbonate contained electrolyte,respectively.In-situ XRD together with XPS and SEM reveal that the NCM622 cycled at-10℃presented better structural stability and more intact interface than that of cathodes cycled at 30℃.It is also found that subzero temperatures only limit the discharge potential of NCM622 without destroying its structure during cycling since it still exhibits high discharge capacity at 30℃after cycled at subzero temperatures.This work may expand the knowledge about the low-temperature characteristics of layered cathode materials for Li-ion batteries and lay the foundation for its further applications. 展开更多
关键词 Ni-rich cathode materials Solid reaction Plasma milling Subzero temperature In-situ X-ray diffraction
下载PDF
Review on Recent Advances of Cathode Materials for Potassium-ion Batteries 被引量:1
16
作者 Mo Sha Long Liu +1 位作者 Huaping Zhao Yong Lei 《Energy & Environmental Materials》 2020年第1期56-66,共11页
Potassium-ion batteries(PIBs) as a promising supplement to lithium-ion batteries have drawn great attention attributing to the abundant potassium resources, the fast-ionic conductivity of potassium ions in electrolyte... Potassium-ion batteries(PIBs) as a promising supplement to lithium-ion batteries have drawn great attention attributing to the abundant potassium resources, the fast-ionic conductivity of potassium ions in electrolyte, and the low standard redox potential of potassium. However, the development of PIBs is still in its infancy, which is largely restricted by the fact that the electrode materials, especially the cathode materials of PIBs, are far from satisfactory in practical applications regarding the capacity, voltage, and cycle life. Therefore, most of current research efforts have been devoted to exploring new and high-performance electrode materials for achieving PIBs with high capacity and voltage as well as excellent cyclability. In this review,the recent advancements on cathode materials for PIBs are specially summarized. Besides, technological developments, scientific challenges, and future research opportunities of cathode materials for PIBs are also briefly outlooked. 展开更多
关键词 cathode materials electrochemical properties potassium-ion batteries recent development
下载PDF
Lithium sulfide nanocrystals as cathode materials for advanced batteries
17
作者 Fengming Wan Liran Fang +2 位作者 Xin Zhang Colin A.Wolden Yongan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期138-169,I0004,共33页
The ever-increasing need for sustainable development requires advanced battery techniques beyond the current generation of lithium ion batteries.Among all candidates being explored,lithium-sulfur batteries are a very ... The ever-increasing need for sustainable development requires advanced battery techniques beyond the current generation of lithium ion batteries.Among all candidates being explored,lithium-sulfur batteries are a very promising system to be commercialized in the near future.Towards this end,the development of lithium sulfide(Li_(2)S)nanocrystal-based cathodes has received tremendous effort and witnessed multiple reviews.Differentiated from the focus on performance improvement in previous reviews,this review summarizes the research progress in line with the approaches of materials synthesis and electrode fabrication.The key chemistry,operation procedure,materials characterizations and performance assessments are all given a balanced description.Moreover,all approaches are collectively analyzed along the lines of six criteria towards practical applications,i.e.,electrode performance,materials quality,resources sustainability,production cost,operation procedure,and consumed energy.Finally,some perspective viewpoints on the future research directions are offered. 展开更多
关键词 Lithium sulfide NANOCRYSTALS cathode materials Advanced batteries
下载PDF
A closed-loop process for recycling LiNi_xCo_yMn_((1-x-y))O_2 from mixed cathode materials of lithium-ion batteries 被引量:11
18
作者 Rujuan Zheng Wenhui Wang +6 位作者 Yunkun Dai Quanxin Ma Yuanlong Liu Deying Mu Ruhong Li Jie Rena Changsong Dai 《Green Energy & Environment》 SCIE 2017年第1期42-50,共9页
With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a si... With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing,leaching and impurity removing, the LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(selected as an example of LiNi_xCo_yMn_(1-x-y)O_2) powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the freshsynthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNi_xCo_yMn_(1-x-y)O_2 cathode material with low secondary pollution. 展开更多
关键词 Spent lithium-ion battery cathode material recycling Acid leaching Purification CO-PRECIPITATION
下载PDF
Synthesis and electrochemical performance of LiMnPO_4 /C composites cathode materials 被引量:4
19
作者 ZHONG Shengkui XU Yuebin +3 位作者 LI Yanhong ZENG Honghu LI Wei WANG Jian 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期474-478,共5页
LiMnPO_4 /C composites were synthesized via solid-state reaction with different carbon sources: sucrose, citric acid and oxalic acid. The sam- ples were characterized by X-ray diffraction (XRD), scanning electron micr... LiMnPO_4 /C composites were synthesized via solid-state reaction with different carbon sources: sucrose, citric acid and oxalic acid. The sam- ples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance test. The results of XRD reveal that carbon coating has no effect on the phase of LiMnPO_4 . The LiMnPO_4 /C synthesized at 600 °C with citric acid as carbon source shows an initial discharge capacity of 117.8 mA·hg^-1 at 0.05 C rate. After 30 cycles, the capacity remains 98.2 mAh·g^-1 . The improved electrochemical properties of LiMnPO_4 /C is attributed to the decomposition of organic acid during the sintering process. 展开更多
关键词 lithium-ion battery cathode material carbon coating LiMnPO^4
下载PDF
Electrochemical performance of Al-substituted Li_3V_2(PO_4)_3 cathode materials synthesized by sol-gel method 被引量:2
20
作者 张宝 刘洁群 +1 位作者 张倩 李艳红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期619-623,共5页
The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 ... The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application. 展开更多
关键词 lithium ion batteries cathode material LI3V2(PO4)3 electrochemical performance sol-gel method
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部