期刊文献+
共找到7,517篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Cavitation Characteristics and Influencing Factors of Herringbone Gear Pump
1
作者 Jinlong Yang Kwang-Hee Lee Chul-Hee Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2917-2946,共30页
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ... Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation. 展开更多
关键词 Herringbone gear pump cavitation rotating speed inlet pressure helix angle TwinMesh
下载PDF
Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by submerged cavitation water jet
2
作者 Wenjun Zhou Meng Zhao +3 位作者 Bo Liu Youzhi Ma Youzhi Zhang Xuanjun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期559-572,共14页
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac... A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms. 展开更多
关键词 Submerged cavitation water jet Hydroxyl-terminated polybutadiene propellant Breaking characteristics Failure modes
下载PDF
Numerical Investigation of the Angle of Attack Effect on Cloud Cavitation Flow around a Clark-Y Hydrofoil
3
作者 Di Peng Guoqing Chen +1 位作者 Jiale Yan Shiping Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2947-2964,共18页
Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehic... Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics. 展开更多
关键词 Cloud cavitation re-entrant jet compression wave clark-Y hydrofoil
下载PDF
Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water:A Review
4
作者 Xiufeng Zhu Jingying Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期671-692,共22页
SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce s... SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce strong oxidizing sulfate radicals.This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation.Furthermore,some insights into the industrial application of HC/PS are also provided.Current research shows that this technology is feasible at the laboratory stage,but its application on larger scales requires further understanding and exploration.In this review,some attention is also paid to the design of the hydrodynamic cavitation reactor and the related operating parameters. 展开更多
关键词 Hydrodynamic cavitation organic pollutant PERSULFATE DEGRADATION influence factor
下载PDF
Behaviors of cavitation bubbles driven by high-intensity ultrasound
5
作者 黄晨阳 李凡 +5 位作者 冯释毅 王成会 陈时 胡静 何芯蕊 宋家凯 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期394-404,共11页
In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentra... In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei,evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μm, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μm. The measured signals and their spectra show the presence of strong negative pressure, broadband noise,and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation.Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles. 展开更多
关键词 ultrasonic cavitation multi-bubble system translational motion of bubbles
原文传递
Jet Characteristics and Optimization of a Cavitation Nozzle for Hydraulic Fracturing Applications
6
作者 Yu Gao Zhenqiang Xu Kaixiang Shen 《Fluid Dynamics & Materials Processing》 EI 2024年第1期179-192,共14页
Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perfora... Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°. 展开更多
关键词 cavitation jet angle nozzle hydraulic characteristics nozzle parameters
下载PDF
Generation and Evolution of Cavitation Bubbles in Volume Alternate Cavitation(VAC)
7
作者 Shangshuang Chen Yun Wang +4 位作者 Fuzhu Li Shenwei Xue Zhenying Xu Chao Yu Kun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期241-251,共11页
Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore t... Cavitation generation methods have been used in multifarious directions because of their diversity,and numerous studies and discussions have been conducted on cavitation generation methods.This study aims to explore the generating mechanism and evolution law of volume alternate cavitation(VAC).In the VAC,liquid water is placed in an airtight container with a variable volume.As the volume alternately changes,the liquid water inside the container continues to cavitate.Then,the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation.In the simulation,the cloud images at seven heights on the central axis are monitored,and the phenomenon and mechanism of height and eccentricity are analyzed in detail.By employing the cavitation flow visualization method,the generating mechanism and evolution law of cavitation are revealed.The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results.In the experiment,the volume change stroke of the airtight container is set to 20 mm,the volume change frequency is 18 Hz,and the shooting frequency of the high-speed camera is set to 10000 FPS.The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud.Also,the volume alternation cycle corresponds to the generation,development,and collapse stages of cavitation bubbles. 展开更多
关键词 cavitation generation method Volume alternate cavitation(VAC) Generating mechanism Evolution law Computational fluid dynamics(CFD) cavitation flow visualization(CFV)
下载PDF
Influence of Cavitation on Unsteady Vortical Flows in a Side Channel Pump
8
作者 Yefang Wang Fan Zhang +3 位作者 Shouqi Yuan Ke Chen Feng Hong Desmond Appiah 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期171-189,共19页
Previous investigation on side channel pump mainly concentrates on parameter optimization and internal unsteady vortical flows.However,cavitation is prone to occur in a side channel pump,which is a challenging issue i... Previous investigation on side channel pump mainly concentrates on parameter optimization and internal unsteady vortical flows.However,cavitation is prone to occur in a side channel pump,which is a challenging issue in promoting performance.In the present study,the cavitating flow is investigated numerically by the turbulence model of SAS combined with the Zwart cavitation model.The vapors inside the side channel pump firstly occur in the impeller passage near the inlet and then spread gradually to the downstream passages with the decrease of NPSHa.Moreover,a strong adverse pressure gradient is presented at the end of the cavity closure region,which leads to cavity shedding from the wall.The small scaled vortices in each passage reduce significantly and gather into larger vortices due to the cavitation.Comparing the three terms of vorticity transport equation with the vapor volume fraction and vorticity distributions,it is found that the stretching term is dominant and responsible for the vorticity production and evolution in cavitating flows.In addition,the magnitudes of the stretching term decrease once the cavitation occurs,while the values of dilatation are high in the cavity region and increase with the decreasing NPSHa.Even though the magnitude of the baroclinic torque term is smaller than vortex stretching and dilatation terms,it is important for the vorticity production along the cavity surface and near the cavity closure region.The pressure fluctuations in the impeller and side channel tend to be stronger due to the cavitation.The primary frequency of monitor points in the impeller is 24.94 Hz and in the side channel is 598.05 Hz.They are quite corresponding to the shaft frequency of 25 Hz(fshaft=1/n=25 Hz)and the blade frequency of 600 Hz(fblade=Z/n=600 Hz)respectively.This study complements the investigation on cavitation in the side channel pump,which could provide the theoretical foundation for further optimization of performance. 展开更多
关键词 Side channel pump Vortical flows cavitation Vortex-cavitation interaction Pressure fluctuation
下载PDF
Experimental Study on Ultrasonic Cavitation Intensity Based on Fluorescence Analysis
9
作者 Linzheng Ye Shida Chuai +1 位作者 Xijing Zhu Dong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期196-204,共9页
The Ultrasonic cavitation effect has been widely used in mechanical engineering,chemical engineering,biomedicine,and many other fields.The quantitative characterization of ultrasonic cavitation intensity has always be... The Ultrasonic cavitation effect has been widely used in mechanical engineering,chemical engineering,biomedicine,and many other fields.The quantitative characterization of ultrasonic cavitation intensity has always been a difficulty.Based on this,a fluorescence analysis method has been adopted to explore ultrasonic cavitation intensity in this paper.In the experiment of fluorescence intensity measurement,terephthalic acid(TA)was used as the fluorescent probe,ultrasonic power,ultrasonic frequency,and irradiation time were independent variables,and fluorescence intensity and fluorescence peak area were used as experimental results.The collapse of cavitation bubble will cause molecular bond breakage and release·OH,and the non-fluorescent substance TA will form the strong fluorescent substance TAOH with·OH.The spectra of the treated samples were measured by a F-7000 fluorescence spectrophotometer.The results showed that the fluorescence intensity and fluorescence peak area increased rapidly after ultrasonic cavitation treatment,and then increased slowly with the increase of ultrasonic power,which gradually increased with the increase of irradiation time.They first decreased and then increased with the increase of ultrasonic frequency from 20 kHz to 40 kHz.The irradiation time was the most influential factor,and the cavitation intensity of low frequency was higher overall.The fluorescence intensity and fluorescence peak area of the samples increased by 2-20 times after ultrasonic treatment,which could increase from 69 and 5238 to 1387 and 95451,respectively.After the irradiation time exceeded 25 min,the growth rate of fluorescence intensity slowed down,which was caused by the decrease of gas content and TA concentration in the solution.The study quantitatively characterized the cavitation intensity,reflecting the advantages of fluorescence analysis,and provided a basis for the further study of ultra-sonic cavitation. 展开更多
关键词 Ultrasonic cavitation cavitation intensity Fluorescence intensity Fluorescence peak area
下载PDF
Recent Developments in Hydrodynamic Cavitation Reactors:Cavitation Mechanism,Reactor Design,and Applications 被引量:1
10
作者 Haoxuan Zheng Ying Zheng Jesse Zhu 《Engineering》 SCIE EI CAS 2022年第12期180-198,共19页
Hydrodynamic cavitation is considered to be a promising technology for process intensification,due to its high energy efficiency,cost-effective operation,ability to induce chemical reactions,and scale-up possibilities... Hydrodynamic cavitation is considered to be a promising technology for process intensification,due to its high energy efficiency,cost-effective operation,ability to induce chemical reactions,and scale-up possibilities.In the past decade,advancements have been made in the fundamental understanding of hydrodynamic cavitation and its main variables,which provide a basis for applications of hydrodynamic cavitation in radical-induced chemical reaction processes.Here,we provide an extensive review of these research efforts,including the fundamentals of hydrodynamic cavitation,the design of cavitation reactors,cavitation-induced reaction enhancement,and relevant industrial applications.Two types of hydrodynamic cavitation reactors—namely,stationary and rotational—are compared.The design parameters of a hydrodynamic cavitation reactor and reactor performance at the laboratory and pilot scales are discussed,and recommendations are made regarding optimal operation and geometric conditions.The commercial cavitation reactors that are currently on the market are reviewed here for the first time.The unique features of hydrodynamic cavitation have been widely applied to various chemical reactions,such as oxidization reactions and wastewater treatment,and to physical processes,such as emulsion generation and component extraction.The roles of radicals and gas bubble implosion are also thoroughly discussed. 展开更多
关键词 Hydrodynamic cavitation cavitation nuclei Hydroxyl radicals Stationary/rotational hydrodynamic cavitation reactor Reaction enhancement cavitation application
下载PDF
Effect of multifunction cavitation using phosphoric acid on fatigue and surface properties of AZ31 magnesium alloy
11
作者 Shunta Matsuoka Fumihiro Kato +2 位作者 Toshihiko Yoshimura Masataka Ijiri Shoichi Kikuchi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1996-2005,共10页
Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to fo... Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to form a high-corrosion film and improve the fatigue properties of an AZ31 magnesium alloy.Surface analysis and plane bending fatigue tests were conducted for the MFC-treated magnesium alloy at a stress ratio,R,of-1.The mechanical action of cavitation bubbles improved the fatigue life of magnesium alloys due to increasing the surface hardness and generating compressive residual stress.However,the combined mechanical and electrochemical action during MFC formed pits on the surface.These pits were large enough to easily nucleate an initial fatigue crack.In addition,the magnesium alloys without pit formation,for which a coating process using phosphoric acid was conducted after MFC using water,showed superior fatigue properties. 展开更多
关键词 Magnesium alloy Multifunction cavitation Surface modification FATIGUE Residual stress
下载PDF
Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel
12
作者 Liang Li Yanxin Qiao +5 位作者 Lianmin Zhang Aili Ma Enobong Felix Daniel Rongyao Ma Jian Chen Yugui Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1338-1352,共15页
The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was f... The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods.The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS.Over the rising period of CE,the 304L SS experienced a transition from passivation to depassivation,leading to the massive growth of metastable pitting and stable pitting.The depassivation of304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred. 展开更多
关键词 cavitation erosion PITTING stainless steel electrochemical noise
下载PDF
Comparison of the effects of submerged laser peening,cavitation peening and shot peening on the improvement of the fatigue strength of magnesium alloy AZ31
13
作者 Hitoshi Soyama Chieko Kuji Yiliang Liao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1592-1607,共16页
To investigate the improvement in the fatigue strength of magnesium alloy by peening methods,magnesium alloy AZ31 was treated by submerged laser peening(SLP),cavitation peening(CP),and shot peening(SP),and the fatigue... To investigate the improvement in the fatigue strength of magnesium alloy by peening methods,magnesium alloy AZ31 was treated by submerged laser peening(SLP),cavitation peening(CP),and shot peening(SP),and the fatigue properties were evaluated by a plane bending fatigue test.In the case of SLP,both the impact induced by laser ablation(LA)and that caused by laser cavitation(LC),which developed after LA,were used.In the present study,the fatigue life at a constant bending stress was examined to determine the suitable coverage.It was found that the fatigue strengths at N=10^(7)for the SLP,CP,and SP specimens treated by each optimum condition were 56%,18%,and 16%higher,respectively,than that of the non-peened(NP)specimen,which was 97 MPa.The key factors in the improvement of fatigue strength by peening methods were work hardening and the introduction of compressive residual stress. 展开更多
关键词 Magnesium alloy Fatigue strength Laser peening cavitation peening Shot peening
下载PDF
Cavitation Diagnostics Based on Self-Tuning VMD for Fluid Machinery with Low-SNR Conditions
14
作者 Hao Liu Zheming Tong +1 位作者 Bingyang Shang Shuiguang Tong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期212-226,共15页
Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interf... Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interference.To solve this issue,this study proposed self-tuning VMD(SVMD)for cavitation diagnostics in fluid machinery,with a special focus on low signal-to-noise ratio conditions.A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition.A hybrid optimized sparrow search algorithm(HOSSA)was developed for optimalαfine-tuning in a refined space based on fault-type-guided objective functions.Based on the submodes obtained using exclusive penalty factors in each iteration,the cavitation-related characteristic frequencies(CCFs)were extracted for diagnostics.The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition.The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs.Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost.SVMD especially enhances the denoising capability of the VMD-based method. 展开更多
关键词 Fluid machinery Self-tuning VMD cavitation diagnostics Hybrid optimized sparrow search algorithm
下载PDF
Corneal endothelial cells and acoustic cavitation in phacoemulsification
15
作者 Kai Chen Wen-Ya Xu +1 位作者 Si-Si Sun Hong-Wei Zhou 《World Journal of Clinical Cases》 SCIE 2023年第8期1712-1718,共7页
Postoperative complications of phacoemulsification,such as corneal edema caused by human corneal endothelial cell(CEC)injury,are still a matter of concern.Although several factors are known to cause CEC damage,the inf... Postoperative complications of phacoemulsification,such as corneal edema caused by human corneal endothelial cell(CEC)injury,are still a matter of concern.Although several factors are known to cause CEC damage,the influence of ultrasound on the formation of free radicals during surgery should be considered.Ultrasound in aqueous humor induces cavitation and promotes the formation of hydroxyl radicals or reactive oxygen species(ROS).ROS-induced apoptosis and autophagy in phacoemulsification have been suggested to significantly promote CEC injury.CEC cannot regenerate after injury,and measures must be taken to prevent the loss of CEC after phacoemulsification or other CEC injuries.Antioxidants can reduce the oxidative stress injury of CEC during phacoemulsification.Evidence from rabbit eye studies shows that ascorbic acid infusion during operation or local application of ascorbic acid during phacoemulsification has a protective effect by scavenging free radicals or reducing oxidative stress.Both in experiments and clinical practice,hydrogen dissolved in the irrigating solution can also prevent CEC damage during phacoemulsification surgery.Astaxanthin(AST)can inhibit oxidative damage,thereby protecting different cells from most pathological conditions,such as myocardial cells,luteinized granulosa cells of the ovary,umbilical vascular endothelial cells,and human retina pigment epithelium cell line(ARPE-19).However,existing research has not focused on the application of AST to prevent oxidative stress during phacoemulsification,and the related mechanisms need to be studied.The Rho related helical coil kinase inhibitor Y-27632 can inhibit CEC apoptosis after phacoemulsification.Rigorous experiments are required to confirm whether its effect is realized through improving the ROS clearance ability of CEC. 展开更多
关键词 CATARACT PHACOEMULSIFICATION Corneal endothelial cells ULTRASOUND Acoustic cavitation Oxidative stress ANTIOXIDANT
下载PDF
Cavitation recognition of axial piston pumps in noisy environment based on Grad-CAM visualization technique
16
作者 Qun Chao Xiaoliang Wei +2 位作者 Jianfeng Tao Chengliang Liu Yuanhang Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期206-218,共13页
The cavitation in axial piston pumps threatens the reliability and safety of the overall hydraulic system.Vibration signal can reflect the cavitation conditions in axial piston pumps and it has been combined with mach... The cavitation in axial piston pumps threatens the reliability and safety of the overall hydraulic system.Vibration signal can reflect the cavitation conditions in axial piston pumps and it has been combined with machine learning to detect the pump cavitation.However,the vibration signal usually contains noise in real working conditions,which raises concerns about accurate recognition of cavitation in noisy environment.This paper presents an intelligent method to recognise the cavitation in axial piston pumps in noisy environment.First,we train a convolutional neural network(CNN)using the spectrogram images transformed from raw vibration data under different cavitation conditions.Second,we employ the technique of gradient-weighted class activation mapping(Grad-CAM)to visualise class-discriminative regions in the spectrogram image.Finally,we propose a novel image processing method based on Grad-CAM heatmap to automatically remove entrained noise and enhance class features in the spectrogram image.The experimental results show that the proposed method greatly improves the diagnostic performance of the CNN model in noisy environments.The classification accuracy of cavitation conditions increases from 0.50 to 0.89 and from 0.80 to 0.92 at signal-to-noise ratios of 4 and 6 dB,respectively. 展开更多
关键词 axial piston pump cavitation recognition CNN Grad-CAM spectrogram image
下载PDF
Peripapillary intrachoroidal cavitation at the crossroads of peripapillary myopic changes
17
作者 Adele Ehongo Zaki Hasnaoui +7 位作者 Nacima Kisma Yassir Alaoui Mhammedi Artemise Dugauquier Kevin Coppens Eloise Wellens Viviane de Maertelaere Francoise Bremer Karelle Leroy 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第12期2063-2070,共8页
AIM:To analyze the prevalence of peripapillary intrachoroidal cavitation(PICC)in eyes with gamma peripapillary atrophy(γPPA),in eyes with peripapillary staphyloma(PPS)and in those combiningγPPA and PPS and to analyz... AIM:To analyze the prevalence of peripapillary intrachoroidal cavitation(PICC)in eyes with gamma peripapillary atrophy(γPPA),in eyes with peripapillary staphyloma(PPS)and in those combiningγPPA and PPS and to analyze border tissue discontinuity in PICC.METHODS:This prospective cross-sectional non interventional study included highly myopic eyes.Non-highly myopic eyes were used as control.Radial and linear scans centered on the optic nerve head were performed using spectral-domain optical coherence tomography.Variables were analyzed along the twelve hourly optical coherence tomography sections in both eyes of each subject.RESULTS:A total of 667 eyes of 334 subjects were included:229(34.3%)highly myopic eyes and 438(65.7%)non highly myopic eyes.The mean age of the highly myopic group was 48.99±17.81y.PICC was found in a total of 40 eyes and in 13.2%(29/220)of highly myopic eyes.PICC was found in 10.4%(40/386)of eyes withγPPA,in 20.5%(40/195)of eyes with PPS and in 22.7%(40/176)of those combiningγPPA and PPS.All the eyes with PICC showed the co-existence ofγPPA and PPS whereas none of the eyes presenting only one of these entities exhibited PICC.A border tissue discontinuity in theγPPA area was found in all eyes with PICC.CONCLUSION:We confirm the presence of a border tissue discontinuity in theγPPA area of all eyes with PICC.These findings suggest the involvement of mechanical factors in the pathogenesis of PICC which may contribute to PICC-related visual field defects. 展开更多
关键词 MYOPIA peripapillary intrachoroidal cavitation peripapillary staphyloma gamma peripapillary atrophy border tissue myopic complications
原文传递
Explosion Event of Cavitation in Intact Xylem Conduit
18
作者 Xingyue Li Fanyi Shen +4 位作者 Tiqiao Xiao Yanling Xue Li Zhang Rongfu Gao Qian Zhang 《Journal of Applied Mathematics and Physics》 2023年第10期2803-2315,共13页
Cavitation in plant conduits only involves two processes of air bubbles: the gradual expansion and elongation, and the explosion event. An explosion event of cavitation, which can only occur in intact conduit at water... Cavitation in plant conduits only involves two processes of air bubbles: the gradual expansion and elongation, and the explosion event. An explosion event of cavitation, which can only occur in intact conduit at water tension, trigs acoustic (or ultrasound) emission and induces air to diffuse with high speed, simultaneously. Synchrotron X-ray phase contrast microscopy (XPCM) was used to capture cavitation event in intact conduits of leaves of corn and rice. Cavitation events occur in certain areas of leaves and have a certain time frame. Before XPCM experiment, several preliminary experiments were done as follows: 1) Paraffin sections of leaves of different species were observed to select samples and to determine the occurrence area of cavitation event of leaves. 2) The time frame of cavitation occurrence was determined by ultrasonic emission. 3) The water potentials of leaves were determined, to know the water state of the leaves during cavitation. Locked the area and time frame of cavitation event in the leaves, consecutive XPCM images of cavitation process were more easily acquired. The images show that the phenomenon of gas bubble fully filling conduits for an instant took place in intact conduits of detached leaves of corn and rice more easily. It is that the gas diffusing in a moment was caused by the explosion of the air seeds which had entered in the intact conduits of the leaves. For living plants, it is suggested that the explosion event of cavitation is the most important for embolism formation. 展开更多
关键词 Synchrotron X-Ray Phase Contrast Microscopy Explosion Event cavitation Intact Conduit
下载PDF
A CFD Study on the Mechanisms Which Cause Cavitation in Positive Displacement Reciprocating Pumps 被引量:2
19
作者 Aldo Iannetti Matthew T. Stickland William M. Dempster 《Journal of Hydraulic Engineering》 2015年第1期47-59,共13页
A transient multiphase CFD (computational fluid dynamics) model was set up to investigate the main causes which lead to cavitation in PD (positive displacement) reciprocating pumps. Many authors agree on distingui... A transient multiphase CFD (computational fluid dynamics) model was set up to investigate the main causes which lead to cavitation in PD (positive displacement) reciprocating pumps. Many authors agree on distinguishing two different types of cavitation affecting PD pumps: flow induced cavitation and cavitation due to expansion. The flow induced cavitation affects the zones of high fluid velocity and consequent low static pressure e.g. the valve-seat volume gap while the cavitation due to expansion can be detected in zones where the decompression effects are important e.g. in the vicinity of the plunger. This second factor is a distinctive feature of PD pumps since other devices such as centrifugal pumps are only affected by the flow induced type. Unlike what has been published in the technical literature to date, where analysis of positive displacement pumps are based exclusively on experimental or analytic methods, the work presented in this paper is based entirely on a CFD approach, it discusses the appearance and the dynamics of these two phenomena throughout an entire pumping cycle pointing out the potential of CFD techniques in studying the causes of cavitation and assessing the consequent loss of performance in positive displacement pumps. 展开更多
关键词 MULTIPHASE flows PD reciprocating pump cavitation model expansion cavitation flow induced cavitation.
下载PDF
Effect of leading edge roughness on cavitation inception and development on thin hydrofoil
20
作者 TAO Ran XIAO Ruofu FARHAT Mohamed 《排灌机械工程学报》 EI CSCD 北大核心 2017年第11期921-926,940,共7页
The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for ... The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for different upstream velocities and incidence angles.The observations clearly revealed that cavitation incipience is enhanced by roughness at incidence angle below 2°.This is in line with the former reports,according to whose roughness element decreases the wettability and traps a larger amount of gas.As a result,surface nucleation is enhanced with an increased risk of cavitation.Surprisingly,for higher incidence angles(>3°),it was found that cavitation incipience is significantly delayed by roughness while developed cavitation is almost the same for both smooth and rough hydrofoils.This unexpected incipience delay is related to the change in the boundary layer structure due to roughness.It was also reported a significant influence of roughness on the dynamic of developed cavitation and shedding of transient cavities. 展开更多
关键词 cavitation inception surface roughness sheet cavitation cloud cavitation HYDROFOIL
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部