期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of inter-helix spacing for helical piles in sand
1
作者 Kang Shao Qian Su +3 位作者 Junwei Liu Kaiwen Liu Zhipeng Xiong Tengfei Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期936-952,共17页
The optimization of the inter-helix spacing is a key issue of the axial bearing capacity of helical piles.In this paper,based on the cavity expansion,an analytical approach considering the small-strain stiffness,stren... The optimization of the inter-helix spacing is a key issue of the axial bearing capacity of helical piles.In this paper,based on the cavity expansion,an analytical approach considering the small-strain stiffness,strength,compressibility and stress level of sand around the helical pile was proposed to analyze the influence zone of the helices to determine the optimal inter-helix spacing in sand.The calculation results of the proposed method were verified using the centrifuge test data and finite element analysis for helical pile in Congleton HST95 sand.They were also compared with those using the Meyerhof pile foundation theory.The results show that the optimal inter-helix spacing based on Meyerhof pile foundation theory differs significantly from the measurement.The range of the influence zone for the helices in sand calculated by the cavity expansion theory matches with the data from literature.The calculation results with the proposed method are consistent with the range of the optimal spacing ratio inferred in the centrifuge tests.The results based on the two-dimensional(2D)finite element model(FEM)are also basically consistent with the calculated analytical solution. 展开更多
关键词 Helical pile SAND Analytical solution cavity expansion theory Optimal inter-helix spacing
下载PDF
Hydraulic fracturing pressure of concentric double-layered cylinder in cohesive soil
2
作者 Dajun YUAN Weiping LUO +1 位作者 Dalong JIN Ping LU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第4期937-947,共11页
This study aims to investigate hydrofracturing in double-layered soil through theoretical and experimental analysis,as multilayered soils where the difference in mechanical properties exists are generally encountered ... This study aims to investigate hydrofracturing in double-layered soil through theoretical and experimental analysis,as multilayered soils where the difference in mechanical properties exists are generally encountered in practical engineering.First,an analytical solution for fracturing pressure in two different concentric regions of soil was presented based on the cavity expansion theory.Then,several triaxial hydraulic fracturing tests were carried out to validate the analytical solution.The comparison between the experimental and analytical results indicates the remarkable accuracy of the derived formula,and the following conclusions were also obtained.First,there is a linear relationship between the fracturing pressure and confining pressure in concentric double-layered cohesive soil.Second,when the internal-layer soil is softer than the external-layer soil,the presence of internal soil on the fracturing pressure approximately brings the weakening effect,and the greater strength distinction between the two layers,the greater the weakening effect.Third,when the internal-layer soil is harder than the external-layer soil,the existence of the internal-layer soil has a strengthening effect on the fracturing pressure regardless of the proportion of internal-layer soil.Moreover,the influence of strength distinction between the two layers on the fracturing pressure is significant when the proportion of internal-layer soil is less than half,while it’s limited when the proportion is more than half.The proposed solution is potentially useful for geotechnical problems involving aspects of cohesive soil layering in a composite formation. 展开更多
关键词 hydraulic fracturing pressure LAYERED cavity expansion theory triaxial fracturing test cohesive soil
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部