BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a pot...BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a potential therapeutic target for cancers,particularly for hepatocellular carcinoma(HCC).However,the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood.AIM To explore the impact of CDC25C on cell proliferation and apoptosis,as well as its regulatory mechanisms in HCC development.METHODS Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences(LV-CDC25C shRNA)to knock down CDC25C.Subsequently,a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo.Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays,respectively.The expression of endoplasmic reticulum(ER)stress-related molecules(glucose-regulated protein 78,X-box binding protein-1,and C/EBP homologous protein)was measured in both cells and subcutaneous xenografts using quantitative real-time PCR(qRT-PCR)and western blotting.Additionally,apoptosis was investigated using flow cytometry,qRT-PCR,and western blotting.RESULTS CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction.A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice.CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response,ultimately promoting ER stress-induced apoptosis in HCC cells.CONCLUSION The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.展开更多
Objective Cell division cyclin 25 homolog C(Cdc25C)is a tumor-associated antigen candidate gene,and this may be used as an effective target in cancer treatment.The present study aims to evaluate the lysis effect of cy...Objective Cell division cyclin 25 homolog C(Cdc25C)is a tumor-associated antigen candidate gene,and this may be used as an effective target in cancer treatment.The present study aims to evaluate the lysis effect of cytotoxic T lymphocytes(CTLs)induced by dendritic cell line DC2.4 overexpressing Cdc25C,and the feasibility of Cdc25C as a component in hepatoma immunotherapy.Methods The mouse Cdc25C gene was ligated into a lentiviral vector,and transfected into DC2.4 cells.The DC2.4 cell phenotype and cytokine secretion were determined by flow cytometry and ELISA,respectively.CD8^(+)T cells were sorted from the spleens of C57BL/6 mice using a magnetic bead sorting kit obtained from Miltenyi Biotech,Germany,and co-cultured with DC2.4 cells for one week as effector cells.Then,IL-2,granzyme B and perforin were detected in the CTL culture medium by ELISA.Next,time-resolved fluorescence immunoassay was used to detect the immune killing effect of Cdc25C-specific CTLs on target cells.Meanwhile,the effect of blocking MHC-I sites on target cells with a monoclonal anti-MHC-I antibody was evaluated.Results The results revealed that Cdc25C could be stably overexpressed in DC2.4 cells by LV-Cdc25C infection.DC2.4 cells transfected with LV-Cdc25C secreted more IL-6,IL-12,TNF-αand IFN-γ,and had higher expression levels of CD40,CD86,CCR7 and MHC-II than unaltered DC2.4 cells.The elevated Cdc25C in dendritic cells also further increased the secretion of IL-2,granzyme B and perforin to elicit Cdc25C-specific CTLs,and induced the higher cytotoxicity in Hepa1-6 cell lines(P<0.05),but this had no effect on the target cells when MHC-I monoclonal antibodies were blocked.Conclusion DC2.4 cells transfected with LV-Cdc25C can induce specific CTLs,and result in a strong cellular immune response.The dendritic cells that overexpress Cdc25C may be useful for hepatoma immunotherapy.展开更多
Transforming growth factor beta (TGF β) may cause cell cycle arrest, terminal differentiation, or apoptosis in most normal epithelial cells, whereas most malignant cell lines are resistant to TGF β. Mechanisms of...Transforming growth factor beta (TGF β) may cause cell cycle arrest, terminal differentiation, or apoptosis in most normal epithelial cells, whereas most malignant cell lines are resistant to TGF β. Mechanisms of resistance to TGF β caused by modulation of cell cycle regulators and/or inactivation of components of the TGF β signaling transduction pathway such as C myc and Smad4 are not well understood. To investigate the potential association between loss of sensitivity to TGF β and expression status of transforming growth factor receptor Ⅱ (TβRⅡ), Smad4, CDC25A and C myc in 14 cell lines derived from ovarian cancer, the expression levels of these genes were detected by semi quantitative RT PCR. Normal ovarian surface tissues were used as controls. The expression of TβRⅡ was detectable in all of 14 cell lines. The expression of Smad4 was decreased in 10 cell lines and 9 cell lines overexpressed CDC25A, as compared to normal controls. CDC25A gene was overexpressed with 88 % (8/9) in tumorigenic cell lines as determined by xenografts in nude mice, and only in 20 % (1/5) of non tumorigenic cell lines ( P <0.05). C myc was not overexpressed in any of these cell lines. The loss of sensitivity to TGF β of cell lines derived from ovarian cancers may be related to a decreased expression of Smad4, which mediates TGF β induced growth inhibition, and/or an overexpression of CDC25A. This overexpression of CDC25A correlates with increased tumorigenicity of ovarian cancer cell lines. The loss of sensitivity to TGF β is not associated with a lack of TβRⅡ.展开更多
In the present study, the effects of metavanadate on the human prostate cancer cell line DU145 and the underlying mechanism were investigated. The results showed that metavanadate can cause cell cycle arrest at G2/M p...In the present study, the effects of metavanadate on the human prostate cancer cell line DU145 and the underlying mechanism were investigated. The results showed that metavanadate can cause cell cycle arrest at G2/M phase which was evidenced by cell cycle analysis and the increased phosphorylation of Cdc2 at its inactive Tyr-15 site. In addition, the results showed that metavanadate can induce reactive oxygen species (ROS) elevation and decrease the level of Cdc25C. This process can be rescued by an antioxidant, N-acetyl cysteine. In conclusion, the results demonstrate that metavanadate can inhibit cell proliferation via cell cycle arrest at G2/M phase in DU145 ceils. Metavanadate-induced ROS formation may play an important role in this process by mediating the degradation of Cdc25C.展开更多
基金Supported by Natural Science Foundation of Guangxi Zhuang Autonomous Region,China,No.2023GXNSFAA026070 and No.2018GXNSFAA281071.
文摘BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a potential therapeutic target for cancers,particularly for hepatocellular carcinoma(HCC).However,the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood.AIM To explore the impact of CDC25C on cell proliferation and apoptosis,as well as its regulatory mechanisms in HCC development.METHODS Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences(LV-CDC25C shRNA)to knock down CDC25C.Subsequently,a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo.Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays,respectively.The expression of endoplasmic reticulum(ER)stress-related molecules(glucose-regulated protein 78,X-box binding protein-1,and C/EBP homologous protein)was measured in both cells and subcutaneous xenografts using quantitative real-time PCR(qRT-PCR)and western blotting.Additionally,apoptosis was investigated using flow cytometry,qRT-PCR,and western blotting.RESULTS CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction.A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice.CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response,ultimately promoting ER stress-induced apoptosis in HCC cells.CONCLUSION The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.
基金the National Natural Science Foundation of China(No.81160264)the Natural Science Foundation of Guangxi Province(No.2016GXNSFAA380267 and No.2018GXNSFAA281071)+1 种基金the Guangxi First-class Discipline Project for Basic Medicine Sciences(No.GXFCDP-BMS-2018)the Research Enhancement Project for Junior Faculty in Higher Education Institutes of Guangxi(No.2018KY0419).
文摘Objective Cell division cyclin 25 homolog C(Cdc25C)is a tumor-associated antigen candidate gene,and this may be used as an effective target in cancer treatment.The present study aims to evaluate the lysis effect of cytotoxic T lymphocytes(CTLs)induced by dendritic cell line DC2.4 overexpressing Cdc25C,and the feasibility of Cdc25C as a component in hepatoma immunotherapy.Methods The mouse Cdc25C gene was ligated into a lentiviral vector,and transfected into DC2.4 cells.The DC2.4 cell phenotype and cytokine secretion were determined by flow cytometry and ELISA,respectively.CD8^(+)T cells were sorted from the spleens of C57BL/6 mice using a magnetic bead sorting kit obtained from Miltenyi Biotech,Germany,and co-cultured with DC2.4 cells for one week as effector cells.Then,IL-2,granzyme B and perforin were detected in the CTL culture medium by ELISA.Next,time-resolved fluorescence immunoassay was used to detect the immune killing effect of Cdc25C-specific CTLs on target cells.Meanwhile,the effect of blocking MHC-I sites on target cells with a monoclonal anti-MHC-I antibody was evaluated.Results The results revealed that Cdc25C could be stably overexpressed in DC2.4 cells by LV-Cdc25C infection.DC2.4 cells transfected with LV-Cdc25C secreted more IL-6,IL-12,TNF-αand IFN-γ,and had higher expression levels of CD40,CD86,CCR7 and MHC-II than unaltered DC2.4 cells.The elevated Cdc25C in dendritic cells also further increased the secretion of IL-2,granzyme B and perforin to elicit Cdc25C-specific CTLs,and induced the higher cytotoxicity in Hepa1-6 cell lines(P<0.05),but this had no effect on the target cells when MHC-I monoclonal antibodies were blocked.Conclusion DC2.4 cells transfected with LV-Cdc25C can induce specific CTLs,and result in a strong cellular immune response.The dendritic cells that overexpress Cdc25C may be useful for hepatoma immunotherapy.
文摘Transforming growth factor beta (TGF β) may cause cell cycle arrest, terminal differentiation, or apoptosis in most normal epithelial cells, whereas most malignant cell lines are resistant to TGF β. Mechanisms of resistance to TGF β caused by modulation of cell cycle regulators and/or inactivation of components of the TGF β signaling transduction pathway such as C myc and Smad4 are not well understood. To investigate the potential association between loss of sensitivity to TGF β and expression status of transforming growth factor receptor Ⅱ (TβRⅡ), Smad4, CDC25A and C myc in 14 cell lines derived from ovarian cancer, the expression levels of these genes were detected by semi quantitative RT PCR. Normal ovarian surface tissues were used as controls. The expression of TβRⅡ was detectable in all of 14 cell lines. The expression of Smad4 was decreased in 10 cell lines and 9 cell lines overexpressed CDC25A, as compared to normal controls. CDC25A gene was overexpressed with 88 % (8/9) in tumorigenic cell lines as determined by xenografts in nude mice, and only in 20 % (1/5) of non tumorigenic cell lines ( P <0.05). C myc was not overexpressed in any of these cell lines. The loss of sensitivity to TGF β of cell lines derived from ovarian cancers may be related to a decreased expression of Smad4, which mediates TGF β induced growth inhibition, and/or an overexpression of CDC25A. This overexpression of CDC25A correlates with increased tumorigenicity of ovarian cancer cell lines. The loss of sensitivity to TGF β is not associated with a lack of TβRⅡ.
基金National Natural Science Foundation of China (Grant No.20871008 and J0830836)
文摘In the present study, the effects of metavanadate on the human prostate cancer cell line DU145 and the underlying mechanism were investigated. The results showed that metavanadate can cause cell cycle arrest at G2/M phase which was evidenced by cell cycle analysis and the increased phosphorylation of Cdc2 at its inactive Tyr-15 site. In addition, the results showed that metavanadate can induce reactive oxygen species (ROS) elevation and decrease the level of Cdc25C. This process can be rescued by an antioxidant, N-acetyl cysteine. In conclusion, the results demonstrate that metavanadate can inhibit cell proliferation via cell cycle arrest at G2/M phase in DU145 ceils. Metavanadate-induced ROS formation may play an important role in this process by mediating the degradation of Cdc25C.