期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Salt-tolerant mechanism of marine Aspergillus niger cellulase cocktail and improvement of its activity 被引量:2
1
作者 Linian Cai Shengnan Xu +2 位作者 Tao Lu Dongqiang Lin Shanjing Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1120-1128,共9页
The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the ... The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the salttolerance of the cellulase cocktail produced by marine A.niger,six cellulase components(AnCel6,AnCel7A,AnCel7B,AnEGL,AnBGL1 and AnBGL2)were obtained by directed expression.Studies on their enzymatic properties revealed that oneβ-glucosidase(AnBGL2)and one endoglucanase(AnEGL)exhibited an outstanding salttolerant property,and one cellobiohydrolase(AnCel7B)exhibited a certain salt-tolerant property.Subsequent study revealed that the salt-tolerant An EGL and AnCel7B endowed the cellulase cocktail with stronger salttolerant property,while the salt-tolerant An BGL2 had no positive effect.Moreover,after overexpression of AnCel6,AnCel7A,AnCel7B and AnEGL,the activity of cellulase cocktail increased by 80%,70%,63%and 68%,respectively.However,the activity of cellulase cocktail was not improved after overexpression of AnBGL1 and AnBGL2.After mixed-strain fermentation with cellobiohydrolase recombinants(cel6 a,cel7a and cel7b recombinants)and endoglucanase recombinant(egl recombinant),the the activity of cellulase cocktail increased by 114%,102%and91%,respectively. 展开更多
关键词 Marine Aspergillus niger cellulase component Directed expression SALT-TOLERANCE cellulase activity
下载PDF
Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality 被引量:16
2
作者 LI Dong-xia NI Kui-kui +2 位作者 ZHANG Ying-chao LIN Yan-li YANG Fu-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第12期2768-2782,共15页
This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and i... This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage. A completely randomized design involving a 8(silage additives)×3 or 2(silage days) factorial arrangement of treatments was adopted in the present study. The 8 silage additive treatments were: untreated alfalfa(control); two commercial additives(GFJ and Chikuso-1); an originally selected LAB(Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus(CB) isolated from fresh alfalfa; cellulase(C); and the combined additives(a214+C and a214+CB). Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days(60 days followed by exposure to air for five additional days). In vitro digestibility was analysed for 30 and 60 days. Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased(P<0.001) pH and increased(P<0.001) lactic acid concentrations during the ensiling process, and there were no differences(P>0.05) among them. Fiber degradation was not significant(P≥0.054) in any C or CB treatments. The a214 treatment showed the highest(P=0.009) in vitro digestibility of dry matter(595.0 g kg^(–1) DM) after ensiling and the highest abundance of Lactobacillus(69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments. Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant. 展开更多
关键词 ALFALFA SILAGE cellulase fermentation quality in VITRO DIGESTIBILITY LACTIC acid bacteria
下载PDF
Effect of Cellulase and Lactic Acid Bacteria on Fermentation Quality and Chemical Composition of Wheat Straw Silage 被引量:12
3
作者 Kuikui Ni Yanping Wang +1 位作者 Huili Pang Yimin Cai 《American Journal of Plant Sciences》 2014年第13期1877-1884,共8页
The object of this study was to determine the effect of cellulase and lactic acid bacteria (LAB) on fermentation quality and chemical composition of wheat straw silage. Silages were prepared using a small-scale fermen... The object of this study was to determine the effect of cellulase and lactic acid bacteria (LAB) on fermentation quality and chemical composition of wheat straw silage. Silages were prepared using a small-scale fermentation system and the moisture level was adjusted to 60% of fresh matter (FM) with deionized water. Treatments were designed as: control silage without additives, LAB inoculant Lactobacillus casei Z3-1 (1.0 × 106 cfu·g-1 of FM), commercial inoculant L. plantarum FG 1 (1.0 × 106 cfu·g-1 of FM), Z3-1 + cellulase and FG 1 + cellulase. The neutral detergent fiber (NDF), acid detergent fiber (ADF) and crude protein (CP) contents of the wheat straw prior to ensiling were 76.93%, 48.52% and 4.63% of dry matter (DM), respectively. After 30 days of fermentation, the silages treated with LAB and LAB + cellulase had a lower (P < 0.05) pH and higher (P < 0.05) lactic acid content than the control, and the coliform bacteria, yeast and mold were inhibited at the early stage of fermentation. Besides, silages treated with cellulase had lower (P < 0.05) values of ADF and NDF than the control. The results confirmed that the addition of cellulase and LAB contributed to improving the fermentation quality of wheat straw silage. 展开更多
关键词 cellulase Chemical Composition LACTIC Acid BACTERIA SILAGE FERMENTATION Wheat STRAW
下载PDF
Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment 被引量:3
4
作者 Rongxin Su Renjun Yang +4 位作者 Yang Jifeng Ruoyu Du Renliang Huang Wei Qi Zhimin He 《Transactions of Tianjin University》 EI CAS 2017年第1期11-19,共9页
We investigated the effects of ultrasound treatment on cellulase adsorption and lignocellulose hydrolysis.The activity of cellulase remained constant upon lowpower ultrasound treatment(<120 W) and decreased using h... We investigated the effects of ultrasound treatment on cellulase adsorption and lignocellulose hydrolysis.The activity of cellulase remained constant upon lowpower ultrasound treatment(<120 W) and decreased using high-power ultrasound(>280 W).Oscillating cellulase adsorption occurred upon ultrasound treatment with any intensity.The maxima for desorption and adsorption were41.9 and 83.1%,respectively,during 1 h of 90 W ultrasound treatment at 50 °C.A comparison between the shorttime with long-time ultrasound experiments indicated that ultrasound treatment tended to desorb cellulase from substrate.However,ultrasound treatment also led to further surface erosion of biomass,which increased cellulase accessibility.These joint actions of ultrasound treatment induced the oscillating adsorption of cellulase.The increase in cellulase accessibility caused by ultrasound treatment led to a significant enhancement in lignocellulose hydrolysis. 展开更多
关键词 LIGNOCELLULOSE cellulase ULTRASOUND ADSORPTION DESORPTION HYDROLYSIS
下载PDF
Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility 被引量:9
5
作者 Hafiz Muhammad Nasir Iqbal Ishtiaq Ahmed +1 位作者 Muhammad Anjum Zia Muhammad Irfan 《Advances in Bioscience and Biotechnology》 2011年第3期149-156,共8页
This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available a... This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available agricultural waste material, wheat straw as growth supported substrate. Trichoderma viride was cultured in fermentation medium of wheat straw under some previously optimized growth conditions and maximum activity of 398±2.43U/mL obtained after stipulated fermentation time period. Cellulase was purified 2.33 fold with specific activity of 105U/mg in comparison to crude enzyme extract using ammonium sulfate precipitation, dialysis and Sephadex-G-100 column chromatography. The enzyme was shown to have a relative low molecular weight of 58kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis. The purified enzyme displayed 6.5 and 55oC as an optimum pH and temperature respectively. Using carboxymethyl cellulose as substrate, the enzyme showed maximum activity (Vmax) of 148U/mL with its corresponding KM value of 68μM. Among activators/inhibitors SDS, EDTA, and Hg2+ showed inhibitory effect on purified cellulase whereas, the enzyme activated by Co2+ and Mn2+ at a concentration of 1mM. The purified cellulase was compatible with four local detergent brands with up to 20 days of shelf life at room temperature suggesting its potential as a detergent additive for improved washing therefore, it is concluded that it may be potentially useful for industrial purposes especially for detergent and laundry industry. 展开更多
关键词 cellulase TRICHODERMA viride Purification SDS-PAGE Characterization DETERGENT Compatibility
下载PDF
Research Progress of Cellulase 被引量:5
6
作者 Lili SONG Xinxin LIU 《Asian Agricultural Research》 2019年第3期74-77,82,共5页
Cellulase is a complex enzyme that can decompose cellulose into glucose,and it could effectively treat cellulose waste. In this paper,it aims to explore development status and research progress of cellulase,and introd... Cellulase is a complex enzyme that can decompose cellulose into glucose,and it could effectively treat cellulose waste. In this paper,it aims to explore development status and research progress of cellulase,and introduce concept and action mechanism of cellulase,research situation of cellulase in molecular aspect,application of cellulase,and development of cellulase is also prospected. 展开更多
关键词 cellulase RESEARCH PROGRESS MOLECULAR MODIFICATION
下载PDF
Application of Statistically Based Experimental Designs to Optimize Cellulase Production and Identification of Gene 被引量:3
7
作者 Aarti Thakkar Meenu Saraf 《Natural Products and Bioprospecting》 CAS 2014年第6期341-351,共11页
A natural bacterial strain identified as Bacillus amyloliquefaciens MBAA3 using 16S rDNA partial genome sequencing has been studied for optimization of cellulase production.Statistical screening of media components fo... A natural bacterial strain identified as Bacillus amyloliquefaciens MBAA3 using 16S rDNA partial genome sequencing has been studied for optimization of cellulase production.Statistical screening of media components for production of cellulase by B.amyloliquefaciens MBAA3 was carried out by Plackett–Burman design.Plackett–Burman design showed CMC,MgSO4 and pH as significant components influencing the cellulase production from the media components screened by Plackett-Burman fractional factorial design.The optimum concentrations of these significant parameters were determined employing the response surface central composite design,involving three factors and five levels was adopted to acquire the best medium for the production of cellulase enzyme revealed concentration of CMC(1.84 g),MgSO4(0.275 g),and pH(8.5)in media for highest enzyme production.Response surface counter plots revealed that middle level of MgSO4 and middle level of CMC,higher level of CMC and lower level of pH and higher level of MgSO4 with lower level of pH increase the production of cellulase.After optimization cellulase activity increased by 6.81 fold.Presence of cellulase gene in MBAA3 was conformed by the amplification of genomic DNA of MBAA3.A PCR product of cellulase gene of 1500 bp was successfully amplified.The amplified gene was conformed by sequencing the amplified product and sequence was deposited in the gene bank under the accession number KF929416. 展开更多
关键词 Bacillus amyloliquefaciens cellulase gene OPTIMIZATION Plackett-Burman design Response surface methodology
下载PDF
Isolation and characteristics of one marine psychrotrophic cellulase-generating bacterium Ar/w/b/75°/10/5 from Chuckchi Sea,Arctic 被引量:4
8
作者 Zeng Yinxin(曾胤新) +1 位作者 Chen Bo(陈波) 《Chinese Journal of Polar Science》 2002年第2期157-168,共12页
Microorganisms living in polar zones play an important part as the potential source of organic activity materials with low temperature characteristics in the biotechnological applications. A psychrotrophic bacterium (... Microorganisms living in polar zones play an important part as the potential source of organic activity materials with low temperature characteristics in the biotechnological applications. A psychrotrophic bacterium (strain Ar/w/b/75°/10/5), producing cellulase at low temperatures during late-exponential and early-stationary phases of cell growth, was isolated from sea ice-covered surface water in Chuckchi Sea, Arctic. This bacterium, with rod cells, was Gram-negative, slightly halophilic. Colony growing on agar plate was in black. Optimum growth temperature was 15℃. No cell growth was observed at 35℃ or above. Optimum salt concentration for cell growth was between 2 and 3 % of sodium chloride in media. Maximal cellulase activity was detected at a temperature of 35℃ and pH8. Cellulase was irreversibly inactivated when incubated at 55℃ within 30 min. Enzyme can be kept stable at the temperature no higher than 25℃. Of special interest was that this bacterium produced various extracellular enzymes including cellulase, amylase, agar hydrolase and protease, at low or moderate temperature conditions, which is certainly of it potential value for applications. 展开更多
关键词 psychrotrophic bacterium cellulase Chuckchi Sea Arctic.
下载PDF
Optimization of Cultural Condition and Synergistic Effect of Lactose with Carboxymethyl Cellulose on Cellulase Production by <i>Bacillus</i>sp. Isolated from Fecal Matter of Elephant (<i>Elephas maximus</i>) 被引量:5
9
作者 Sangrila Sadhu Pallab Kumar Ghosh +1 位作者 Tarun Kumar De Tushar Kanti Maiti 《Advances in Microbiology》 2013年第3期280-288,共9页
A cellulase producing bacterium (E3 strain) was isolated from fecal matter of elephant and identified as Bacillus sp. using 16S rDNA sequenced based molecular phylogenetic approach. While studying the effect of substr... A cellulase producing bacterium (E3 strain) was isolated from fecal matter of elephant and identified as Bacillus sp. using 16S rDNA sequenced based molecular phylogenetic approach. While studying the effect of substrates like Carboxymethyl cellulose (CMC), avicel, starch, maltose, sucrose, glucose, fructose, galactose and lactose on cellulase production, it was found that CMC was best carbon source induced cellulase production followed by lactose in this bacterial strain. A positive synergistic effect of lactose with CMC was also observed with enhancement of 5 - 6 times in cellulase production. The optimum cellulase production was recorded with 1% CMC and 1% lactose when added individually in the Omeliansky’s medium. The results showed that addition lactose with CMC greatly enhances the production and activity of various cellulase enzymes. The optimal fermentation conditions for the biosynthesis of cellulase by this strain were found to be temperature: 37℃, pH 7.0. The nitrogen source NH4Cl at 0.15% was optimum for cellulase production by this bacterium. 展开更多
关键词 Avicelase Β-GLUCOSIDASE CARBOXYMETHYL cellulase (CMCase) LACTOSE
下载PDF
Cellulase production by Aspergillus unguis in solid state fermentation 被引量:1
10
作者 K.Shruthi P.Suresh Yadav +1 位作者 B.V.Siva Prasad M.Subhosh Chandra 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期205-212,共8页
Lignocellulosic substrates are a good carbon source and provide rich growth media for a variety of microorganisms which prodLuce industrially important enzymes. Cellulases are a group of hydrolytic enzymes such as fil... Lignocellulosic substrates are a good carbon source and provide rich growth media for a variety of microorganisms which prodLuce industrially important enzymes. Cellulases are a group of hydrolytic enzymes such as filter paperase (FPase), carboxymethyl cellulase(CMCase) andβ-glucosidase-responsible for release of sugars in the bioconversion of the lignocellulosic biomass into a variety of value-added products. This study examined cellulase production by a newly isolated Aspergillus unguis on individual lignocellulosic substrates in solid state fermentation (SSF). The maximum peak production of enzymes varied from one substrate to another, however,based on the next best solid support and local availability of groundnut fodder supported maximum enzyme yields compared with other solid supports used in this study.Groundnut fodder supported significant production of FPase (5.9 FPU/g of substrate), CMCase (1.1 U/g of substrate) andβ-glucosidase activity (6.5 U/g of substrate) in SSF. Considerable secretion of protein (27.0 mg/g of substrate) on groundnut fodder was recorded. Constant increment of protein content in groundnut fodder due to cultivation of A. unguis is an interesting observation and it has implications for the improvement of nutritive value of groundnut fodder for cattle. 展开更多
关键词 LIGNOCELLULOSIC SUBSTRATES ASPERGILLUS unguis cellulase SOLID state FERMENTATION
下载PDF
Application of response surface methodology to the modeling of cellulase purification by solvent extraction 被引量:3
11
作者 Jagdish Singh Anamika Sharma 《Advances in Bioscience and Biotechnology》 2012年第4期408-416,共9页
Central composite design (CCD)sp. JS14 in a solvent extraction was established with Response surface methodology (RSM). Solvent concentration, pH, temperature and retention time were selected as process variables to e... Central composite design (CCD)sp. JS14 in a solvent extraction was established with Response surface methodology (RSM). Solvent concentration, pH, temperature and retention time were selected as process variables to evaluate the purification impact factor in solvent precipitation, including the purification fold and % recovery. An experimental space with 13 purification fold and 23 recovery percentage recovery is achieved through the optimized condition based on the model. The molecular weight of the purified enzyme was estimated to be 32.5 KDa. Optimum activity of purified enzyme was at pH and temperature 6.5℃ and 40℃ respectively. Enzyme showed maximum activity with carboxymethyl cellulose as substrate with compare to rice husk, wheat straw and sucrose. The purified cellulase activity was inhibited by Na+, Cl- Mg2+ Tween 80 and EDTA. 展开更多
关键词 cellulase PURIFICATION SOLVENT EXTRACTION Response Surface METHODOLOGY
下载PDF
The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals 被引量:2
12
作者 Ge Wang Xiaowen Zhang +3 位作者 Li Wang Keke Wang Fanglin Peng Linsong Wang 《Advances in Biological Chemistry》 2012年第4期390-395,共6页
The effects of various metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Co2+) and anions (Cl–, SO2-4 and CH3COO–) on two cellulases were investigated. Fitting of the data to Michaelis-Menten kinetics showed that Al3+ noncom-p... The effects of various metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Co2+) and anions (Cl–, SO2-4 and CH3COO–) on two cellulases were investigated. Fitting of the data to Michaelis-Menten kinetics showed that Al3+ noncom-petitively inhibited cellulase (Km = 22.68 g/L;Vmax = 0.269 mg/min at 5.0 mmol/L AlCl3) and Mg2+ competitively inhibited cellulase (Km = 50.0 g/L;Vmax = 0.434 mg/min at 10.0 mmol/L MgCl2) Different metal ions increased or decreased inhibition of cellulase activity slightly below 1 mmol/L and strongly over 10 mmol/L. The results indicated that filter paper activeity (FPA) was suitable for analysis of enzymatic saccharification with various lignocellulosic substrates whereas crude cellulase was suitable for applications in the biomass industry. Some metal ions were proved to inhibit cellulase reversibly. 展开更多
关键词 cellulase ENZYME Activity ENZYME DEACTIVATION Kinetics Parameters Metal Ions ANIONS
下载PDF
Isolation and molecular identification of cellulolytic bacteria from Dig Rostam hot spring and study of their cellulase activity 被引量:1
13
作者 Sareh HAJIABADI Mansour MASHREGHI +2 位作者 Ahmad Reza BAHRAMI Kiarash GHAZVINI Maryam M.MATIN 《BIOCELL》 SCIE 2020年第1期63-71,共9页
Cellulose is the main structural component of lignocellulosic wastes that can be converted to sugars and biofuels by cellulase.Due to wide applications of this enzyme in various industries around the world,cellulase i... Cellulose is the main structural component of lignocellulosic wastes that can be converted to sugars and biofuels by cellulase.Due to wide applications of this enzyme in various industries around the world,cellulase is considered as the third industrial enzyme.The ability of thermophilic bacteria in the production of heat-stable cellulases has made them valuable tools in biotechnology.The aim of this study was isolation and molecular identification of cellulolytic thermophile bacteria from Dig Rostam hot spring and investigating their cellulase activity.Samples were taken from water and sediments of this hot spring,and cellulolytic bacteria were enriched in media containing cellulose as the only carbon source.The bacteria were incubated at 60℃,and single colonies were then isolated on solid media.Congo red assay was used as a quick test for the qualitative screening of cellulase activity.According to these qualitative results,four colonies named CDB1,CDB2,CDB3,and CDB4 were isolated,and their growth curve and some other characteristics were determined by biochemical assays.Moreover,endoglucanase,exoglucanase,and FPase activities of the isolates were investigated quantitatively.Results indicated that CDB1 exhibited the highest endoglucanase(0.096 U/mL)and exoglucanase(0.156 U/mL)activities among other isolates.16S rDNA partial sequencing indicated that CDB1 had 99%similarity to the genus Anoxybacillus,and the other isolates showed the highest similarity to the genus Geobacillus.The cellulase gene of CDB1 isolate with the highest cellulase activity was also cloned,and its sequence is reported for the first time.Further studies on this thermophilic enzyme might be useful for industrial applications. 展开更多
关键词 ANOXYBACILLUS cellulase Enzyme activity assay Thermophilic bacteria 16S rDNA
下载PDF
Application of Box-Behnken Design for Optimization of Different Pretreatment Conditions for Cellulase Production 被引量:1
14
作者 Sidra Iqbal Muhammad Irfan +2 位作者 Fouzia Tabassum Hafiz Abdullah Shakir Javed Iqbal Qazi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第3期51-59,共9页
Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design,a three variable factors for response surface methodology by Bacillus subtil... Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design,a three variable factors for response surface methodology by Bacillus subtilus K^(-1)8.Maximum cellulose production performed in 250 mL erlenmeyer flask with submerged fermentation attained at 50℃,p H 5,140 r·min^(-1) for 24 h.Results showed the efficient cellulose production from acid steam pretreatment(being autoclaved at 15 Psi for 15 min)than acid pretreatment.The optimum condition for maximum carboxymethyl cellulas(CMCase)was 1.811 IU·mL^(-1)·min^(-1)(0.8%acid conc.,10 g biomass loading,6 h reaction time)and filter paper activity(FPase)was 2.255 IU·mL^(-1)·min^(-1)(1%acid conc.,10 g biomass loading,8 h reaction time).Whereas,the acid steam maximum CMCase activity recorded was 2.585 IU·mL^(-1)·min^(-1)(0.8%acid conc.,15 g substrate loading and 8 h reaction time)and the highest FPase activity was 2.055 IU·mL^(-1)·min^(-1)(0.8%conc.,10 g biomass,6 h reaction time then autoclaved).Results revealed that acid pretreated Eucalyptus leaves were better lignocellulosic biomass for cellulose production by submerged fermentation. 展开更多
关键词 cellulase PRETREATMENT EUCALYPTUS Bacillus sp Response Surface Methodology(RSM)
下载PDF
Combined Cellulase and Wrinkle-free Treatment on Cotton Fabric 被引量:1
15
作者 周立明 杨国荣 袁进华 《Journal of Donghua University(English Edition)》 EI CAS 2001年第1期11-15,共5页
1,2, 3,4 - butanetetracarboxylic acid (BTCA) offers an alternative to the conventional N-methlol compounds as a crosslinking agent for cellulose textiles. Cellulase treatment is an effective method to improve the hand... 1,2, 3,4 - butanetetracarboxylic acid (BTCA) offers an alternative to the conventional N-methlol compounds as a crosslinking agent for cellulose textiles. Cellulase treatment is an effective method to improve the handle of the cotton fabric. Thus it is of particular interest to treat cotton fabric using cellulase and BTCA simultaneously.In this study, BTCA was applied to the cellulase pretreated cotton fabric, and softener was also used. The results show that the treated fabric does not only have good wrinkle-free property but also good handle. 展开更多
关键词 cellulase wrinkle-free crosslinking.
下载PDF
Lignin Interaction with Cellulase during Enzymatic Hydrolysis 被引量:12
16
作者 Mingfu Li Qingtong Zhang +2 位作者 Changzhou Chen Shuangfei Wang Douyong Min 《Paper And Biomaterials》 2019年第4期15-30,共16页
The conversion of lignocellulosic biomass into biofuels or biochemicals typically involves a pretreatment process followed by the enzyme-catalyzed hydrolysis of cellulose and hemicellulose components to fermentable su... The conversion of lignocellulosic biomass into biofuels or biochemicals typically involves a pretreatment process followed by the enzyme-catalyzed hydrolysis of cellulose and hemicellulose components to fermentable sugars.Many factors can contribute to the recalcitrance of biomass,e.g.,the lignin content and structure,crystallinity of cellulose,degree of fiber polymerization,and hemicellulose content,among others.However,nonproductive binding between cellulase and lignin is the factor with the greatest impact on enzymatic hydrolysis.To reduce the nonproductive adsorption of enzymes on lignin and improve the efficiency of enzymatic hydrolysis,this review comprehensively summarized the progress that has been made in understanding the interactions between lignin and enzymes.Firstly,the effects of pretreatment techniques on lignin content and enzymatic hydrolysis were reviewed.The effects of lignin content and functional groups on enzymatic hydrolysis were then summarized.Methods for the preparation and characterization of lignin films were assessed.Finally,the methods applied to characterize the interactions between lignin and cellulase were reviewed,and methods for decreasing the nonproductive binding of enzymes to lignin were discussed.This review provides an overview of the current understanding of how lignin hinders the enzymatic hydrolysis of lignocellulosic biomass,and provides a theoretical basis for the development of more economical and effective methods and additives to reduce the interaction of lignin and enzymes to improve the efficiency of enzymatic hydrolysis. 展开更多
关键词 LIGNOCELLULOSIC BIOMASS LIGNIN cellulase nonproductive BINDING INTERACTION
下载PDF
Cellulase Producing Bacteria from the Wood-Yards on Kallai River Bank 被引量:1
17
作者 Sasidharan Sreedevi Sreedharan Sajith Sailas Benjamin 《Advances in Microbiology》 2013年第4期326-332,共7页
This study evaluates the influence of growth parameters such as pH, temperature, Carboxy Methyl Cellulose (CMC) concentration and agitation on cellulase production from three bacterial strains, viz., Achromobacter xyl... This study evaluates the influence of growth parameters such as pH, temperature, Carboxy Methyl Cellulose (CMC) concentration and agitation on cellulase production from three bacterial strains, viz., Achromobacter xylosoxidans BSS4, Bacillus sp. BSS3 and Pseudomonas sp. BSS2 isolated from the wood-yards on Kallai river bank in Kerala. Production of cellulase by these isolates was detected using basal salt medium (BSM) with 0.5% CMC as supplement, and CMCase activity was confirmed by iodine test. Dinitrosalicylic acid method was employed for assaying the cellulase production by measuring the amount of glucose liberated in μmol/mL/min. Maximum enzyme production from Pseudomonas sp. BSS2 was at pH 8, 37℃ with 1% CMC and 150 rpm, and cellulase production increased from initial 49.84 U/mL to 91.28 U/mL after optimization. The highest enzyme activity from Bacillus sp. BSS3 was at pH 9, 37℃ with 1% CMC, 150 rpm, and cellulase production increased from initial 26.05 U/mL to 104.68 U/mL after optimization. The maximum enzyme production from A. xylosoxidans BSS4 was at pH 7, 40℃ with 0.5% CMC and 150 rpm, and cellulase production increased from initial 55.28 U/mL to 68.37 U/mL after optimization. Thus among the three isolates, Bacillus sp. BSS3 showed maximum enzyme yield which can be explored for further scale up studies with an industrial perspective. 展开更多
关键词 cellulase Carboxy METHYL CELLULOSE Dinitrosalicylic Acid Optimization SUBMERGED FERMENTATION
下载PDF
Partial Purification and Characterization of Cellulase Produced by <i>Bacillus sphaericus</i>CE-3 被引量:1
18
作者 Chito Clare Ekwealor Fredrick John Chidi Odibo Chukwudi Ogbonnaya Onwosi 《Advances in Microbiology》 2017年第4期293-303,共11页
Cellulase is an enzyme produced by fungi, bacteria, protozoa and termite, that hydrolyze cellulose. They are known for their diverse applications in industry and medicine. The aim of this study is to purify and invest... Cellulase is an enzyme produced by fungi, bacteria, protozoa and termite, that hydrolyze cellulose. They are known for their diverse applications in industry and medicine. The aim of this study is to purify and investigate cellulolytic properties of cellulase enzyme produced by Bacillus sphaericus CE-3 isolated from refuse dump in Nnamdi Azikiwe University, Awka, Nigeria. Enzyme was produced by submerged fermentation at 30°C for 30 h. The enzyme was purified to homogeneity by dialysis in 4M sucrose solution, ion-exchange chromatography on Q-Sepharose FF and by hydrophobic interaction chromatography on Phenyl Sepharose CL-4B. The relative molecular mass of the enzyme was estimated using SDS-Polyacrylamide gel electrophoresis. Effects of temperature, pH and metals on enzyme activity and stability and the relative rate of hydrolysis of various substrates were also studied. The Purification fold for the enzyme was 7.8, with 66.4 μ/mg specific activity protein and overall yield of 35.8. The relative molecular mass range of the enzyme was estimated between 22.3 kDa - 26.3 kDa. The enzyme was optimally active at pH 9.0 and 40°C, stable at pH 9.0 and unusually retained over 90% activity between 50°C - 100°C after 30 min incubation. It was strongly activated by Mn2+ but inhibited by Ba2+, Co2+, Hg2+, Pb2+, Cu2+, Sr2+, Fe2+, Ca2+ and Zn2+. The cellulase displayed high catalytic activity with untreated sawdust, followed by carboxymethyl cellulose, while sodium hydroxide treated sawdust was the least hydrolyzed. Since the enzyme is thermo-stable, alkalophilic and could utilize natural wastes like sawdust as substrate, it is obvious that it would be of great use in textile, starch processing and pulp and paper industries. 展开更多
关键词 cellulase Bacillus sphaericus CE-3 UNTREATED SAWDUST Catalytic Activity
下载PDF
Enhanced bio-catalytic and tolerance properties of an indigenous cellulase through xerogel immobilization 被引量:1
19
作者 Hafiz Muhammad Nasir Iqbal Shagufta Kamal +1 位作者 Ishtiaq Ahmed Muhammad Tahir Naveed 《Advances in Bioscience and Biotechnology》 2012年第4期308-313,共6页
Today, demand exists for cost-effective production of industrially important enzymes from entire scientific sectors. By keeping in mind the extensive industrial applications of cellulase, this study was performed to i... Today, demand exists for cost-effective production of industrially important enzymes from entire scientific sectors. By keeping in mind the extensive industrial applications of cellulase, this study was performed to immobilize the indigenous enzyme produced from Trichoderma viride under pre-optimized SSF of an agricultural waste material, wheat straw. To enhance the bio-catalytic and tolerance properties of the present enzyme gel matrix immobilization engineering was applied. Previously, 2.33~fold purified novel cellulase was immobilized in to a xerogel matrix of TMOS and PTMS. FTIR spectroscopy confirmed the successful immobilization of cellulase. The free and immobilized cellulase was characterized and stability profile showed that after 24 h incubation, immobilization enhanced the thermo-stability up to 75% against 80℃ as compare to the free enzyme. Xerogel matrix immobilization enhanced the catalytic efficiency of entrapped enzyme than that of the free cellulase. Among activators/inhibitors SDS, EDTA, and Hg2+ showed inhibitory effect while, gel matrix immobilization enhanced 80% tolerance capacity of the cellulase against inactivating agents. 展开更多
关键词 Bio-Catalysis cellulase T. viride IMMOBILIZATION Characterization
下载PDF
Immobilization of Commercial Cellulase and Xylanase by Different Methods Using Two Polymeric Supports 被引量:1
20
作者 Sheila Romo-Sánchez Conrado Camacho +1 位作者 Héctor L. Ramirez María Arévalo-Villena 《Advances in Bioscience and Biotechnology》 2014年第6期517-526,共10页
Industrial applications require enzymes highly stable and economically viable in terms of reusability. Enzyme immobilization is an exciting alternative to improve the stability of enzymatic processes. The immobilizati... Industrial applications require enzymes highly stable and economically viable in terms of reusability. Enzyme immobilization is an exciting alternative to improve the stability of enzymatic processes. The immobilization of two commercial enzymes is reported here (cellulase and xylanase) using three chemical methods (adsorption, reticulation, and crosslinking-adsorption) and two polymeric supports (alginate-chitin and chitosan-chitin). The optimal pH for binding was 4.5 for cellulase and 5.0 for xylanase, and the optimal enzyme concentrations were 170 μg/mL and 127.5 μg/mL respectively, being the chitosan and the ideal support. In some cases, a low concentration of crosslinking agent (glutaraldehyde) improved stability of the immobilization process. Biotechnological characterization showed that the reusability of enzymes was the most striking finding, particularly of immobilized cellulase using glutaraldehyde, which after 19 cycles retained 64% activity. These results confirm the economic and biotechnical advantages of enzyme immobilization for a range of industrial applications. 展开更多
关键词 cellulase Crosslinking-Adsorption IMMOBILIZATION RETICULATION XYLANASE
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部