期刊文献+
共找到2,898篇文章
< 1 2 145 >
每页显示 20 50 100
FIBTNet:Building Change Detection for Remote Sensing Images Using Feature Interactive Bi-Temporal Network
1
作者 Jing Wang Tianwen Lin +1 位作者 Chen Zhang Jun Peng 《Computers, Materials & Continua》 SCIE EI 2024年第9期4621-4641,共21页
In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of... In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection. 展开更多
关键词 change detection change residual module feature exchange mechanism feature fusion
下载PDF
A lightweight false alarm suppression method in heterogeneous change detection
2
作者 XU Cong HE Zishu LIU Haicheng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期899-905,共7页
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light... Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms. 展开更多
关键词 convolutional neural network(CNN) graph convolu-tional network(GCN) heterogeneous change detection LIGHTWEIGHT false alarm suppression
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
3
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
下载PDF
Coherent change detection of fine traces based on multi-angle SAR observations
4
作者 KOU Xiuli WANG Guanyong +1 位作者 LI Jun CHEN Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期1-8,共8页
Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian prod... Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm. 展开更多
关键词 coherent change detection(CCD) multi-angle synthetic aperture radar(SAR)
下载PDF
Spectral‐spatial sequence characteristics‐based convolutional transformer for hyperspectral change detection
5
作者 Chengle Zhou Qian Shi +3 位作者 Da He Bing Tu Haoyang Li Antonio Plaza 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1237-1257,共21页
Recently,ground coverings change detection(CD)driven by bitemporal hyperspectral images(HSIs)has become a hot topic in the remote sensing community.There are two challenges in the HSI‐CD task:(1)attribute feature rep... Recently,ground coverings change detection(CD)driven by bitemporal hyperspectral images(HSIs)has become a hot topic in the remote sensing community.There are two challenges in the HSI‐CD task:(1)attribute feature representation of pixel pairs and(2)feature extraction of attribute patterns of pixel pairs.To solve the above problems,a novel spectral‐spatial sequence characteristics‐based convolutional transformer(S3C‐CT)method is proposed for the HSI‐CD task.In the designed method,firstly,an eigenvalue extrema‐based band selection strategy is introduced to pick up spectral information with salient attribute patterns.Then,a 3D tensor with spectral‐spatial sequence characteristics is proposed to represent the attribute features of pixel pairs in the bitemporal HSIs.Next,a fusion framework of the convolutional neural network(CNN)and Transformer encoder(TE)is designed to extract high‐order sequence semantic features,taking into account both local context information and global sequence dependencies.Specifically,a spatial‐spectral attention mechanism is employed to prevent information reduction and enhance dimensional interactivity between the CNN and TE.Finally,the binary change map is determined according to the fully‐connected layer.Experimental results on real HSI datasets indicated that the proposed S3C‐CT method outperforms other well‐known and state‐of‐the‐art detection approaches in terms of detection performance. 展开更多
关键词 change detection IMAGEANALYSIS
下载PDF
Classification and Spatio-Temporal Change Detection of Land Use/Land Cover Using Remote Sensing and Geographic Information System in the Manouba Region, NE Tunisia
6
作者 Nadia Trabelsi Ibtissem Triki +1 位作者 Imen Hentati Nizar Rachdi 《Journal of Geographic Information System》 2023年第6期652-668,共17页
Land use/land cover (LULC) mapping and change detection are fundamental aspects of remote sensing data application. Therefore, selecting an appropriate classifier approach is crucial for accurate classification and ch... Land use/land cover (LULC) mapping and change detection are fundamental aspects of remote sensing data application. Therefore, selecting an appropriate classifier approach is crucial for accurate classification and change assessment. In the first part of this study, the performance of machine learning classification algorithms was compared using Landsat 9 image (2023) of the Manouba government (Tunisia). Three different classification methods were applied: Maximum Likelihood Classification (MLC), Support Vector Machine (SVM), and Random Trees (RT). The classification aimed to identify five land use classes: urban area, vegetation, bare area, water and forest. A qualitative assessment was conducted using Overall Accuracy (OA) and the Kappa coefficient (K), derived from a confusion matrix. The results of the land cover classification demonstrated a high level of accuracy. The SVM method exhibited the best performance, with an overall accuracy of 93% and a kappa accuracy of 0.9. The ML method is the second-best classifier with an overall accuracy of 92% and a kappa accuracy of 0.88. The Random Trees method yielded the lowest accuracy among the three approaches, with an overall accuracy of 91% and a kappa accuracy of 0.87. The second part of the study focused on analyzing LULC changes in the study area. Based on the classification results, the SVM method was chosen to classify the Landsat 7 image acquired in 2000. LULC changes from 2000 to 2023 were investigated using change detection comparison. The findings indicate that over the last 23 years, vegetation land and urban areas in the study area have experienced significant increases of 31.94% and 5.47%, respectively. This study contributed to a better understanding of the classification process and dynamic LULC changes in the Manouba region. It provided valuable insights for decision-makers in planning land conservation and management. 展开更多
关键词 Remote Sensing GIS LULC SVM MLC RT change detection
下载PDF
SAR Change Detection Algorithm Combined with FFDNet Spatial Denoising
7
作者 Yuqing Wu Qing Xu +3 位作者 Zheng Zhang Jingzhen Ma Tianming Zhao Xinming Zhu 《Journal of Environmental & Earth Sciences》 2023年第2期88-101,共14页
Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extrac... Objectives:When detecting changes in synthetic aperture radar(SAR)images,the quality of the difference map has an important impact on the detection results,and the speckle noise in the image interferes with the extraction of change information.In order to improve the detection accuracy of SAR image change detection and improve the quality of the difference map,this paper proposes a method that combines the popular deep neural network with the clustering algorithm.Methods:Firstly,the SAR image with speckle noise was constructed,and the FFDNet architecture was used to retrain the SAR image,and the network parameters with better effect on speckle noise suppression were obtained.Then the log ratio operator is generated by using the reconstructed image output from the network.Finally,K-means and FCM clustering algorithms are used to analyze the difference images,and the binary map of change detection results is generated.Results:The experimental results have high detection accuracy on Bern and Sulzberger’s real data,which proves the effectiveness of the method. 展开更多
关键词 SAR change detection Image noise reduction FFDNet Difference diagram Clustering algorithm
下载PDF
ResCD-FCN:Semantic Scene Change Detection Using Deep Neural Networks
8
作者 S.Eliza Femi Sherley J.M.Karthikeyan +3 位作者 N.Bharath Raj R.Prabakaran A.Abinaya S.V.V.Lakshmi 《Journal on Artificial Intelligence》 2022年第4期215-227,共13页
Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the ti... Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the timelines are analyzed.Periodical land change analysis is used for many real time applications for valuation purposes.Majority of the research works are focused on Convolutional Neural Networks(CNN)which tries to analyze changes alone.Semantic information of changes appears to be missing,there by absence of communication between the different semantic timelines and changes detected over the region happens.To overcome this limitation,a CNN network is proposed incorporating the Resnet-34 pre-trained model on Fully Convolutional Network(FCN)blocks for exploring the temporal data of satellite images in different timelines and change map between these two timelines are analyzed.Further this model achieves better results by analyzing the semantic information between the timelines and based on localized information collected from skip connections which help in generating a better change map with the categories that might have changed over a land area across timelines.Proposed model effectively examines the semantic changes such as from-to changes on land over time period.The experimental results on SECOND(Semantic Change detectiON Dataset)indicates that the proposed model yields notable improvement in performance when it is compared with the existing approaches and this also improves the semantic segmentation task on images over different timelines and the changed areas of land area across timelines. 展开更多
关键词 Remote sensing convolutional neural network semantic segmentation change detection semantic change detection resnet FCN
下载PDF
Automatic Road Change Detection and GIS Updating from High Spatial Remotely-Sensed Imagery 被引量:5
9
作者 ZHANGQiaoping IsabelleCouloigner 《Geo-Spatial Information Science》 2004年第2期89-95,107,共8页
This paper presents a framework for road network change detection in order to update the Canadian National Topographic DataBase (NTDB). The methodology has been developed on the basis of road extraction from IRS\|pan ... This paper presents a framework for road network change detection in order to update the Canadian National Topographic DataBase (NTDB). The methodology has been developed on the basis of road extraction from IRS\|pan images (with a 5.8 m spatial resolution) by using a wavelet approach. The feature matching and conflation techniques are used to road change detection and updating. Elementary experiments have showed that the proposed framework could be used for developing an operational road database updating system. 展开更多
关键词 road extraction change detection updating feature matching CONFLATION
下载PDF
Urban Land Use Change Detection Using Multisensor Satellite Images 被引量:5
10
作者 DENG Jin-Song WANG Ke +1 位作者 LI Jun DENG Yan-Hua 《Pedosphere》 SCIE CAS CSCD 2009年第1期96-103,共8页
Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in develope... Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area. 展开更多
关键词 change detection land use multisensor satellite image principal component analysis (PCA) urban area
下载PDF
Automatic Change Detection of Geo-spatial Data from Imagery 被引量:3
11
作者 LIDeren SUIHaigang XIAOPing 《Geo-Spatial Information Science》 2003年第3期1-7,共7页
The problems and difficulty of current change detection techniques are presented. Then, according to whether image registration is done before change detection algorithms, the authors classify the change detection int... The problems and difficulty of current change detection techniques are presented. Then, according to whether image registration is done before change detection algorithms, the authors classify the change detection into two categories:the change detection after image registration and the change detection simultaneous with image registration. For the former, four topics including the change detection between new image and old image, the change detection between new image and old map, the change detection between new image/old image and old map, and the change detection between new multi-source images and old map/image are introduced. For the latter, three categories, i.e. the change detection between old DEM, DOM and new non-rectification image, the change detection between old DLG, DRG and new non-rectification image, and the 3D change detection between old 4D products and new multi-overlapped photos, are discussed. 展开更多
关键词 change detection geographical information remote sensing ( RS) imageregistration feature matching
下载PDF
CHANGE DETECTION FROM AERIAL IMAGES ACQUIRED IN DIFFERENT DURATIONS 被引量:2
12
作者 Zhang Jianqing Zhang Zuxun +1 位作者 Fang Zhen Fan Hong 《Geo-Spatial Information Science》 1999年第1期16-20,共5页
Because of quick development of cities, the update of urban GIS data is very important. Change detection is the base of automatic or semi-automatic data update. One way of change detections in urban area is based on o... Because of quick development of cities, the update of urban GIS data is very important. Change detection is the base of automatic or semi-automatic data update. One way of change detections in urban area is based on old and new aerial images acquired in different durations. The corresponding theory and experiments are introduced and analyzed in this paper. The main procedure includes four stages. The new and old images have to be registered firstly. Then image matching, based on the maximum correlation coefficient, is performed between registered images after the low contrast areas have been removed. The regions with low matching quality are extracted as candidate changed areas. Thirdly, the Gaussian-Laplacian operator is used to detect edges in candidate changed areas on both the registered images, and the straight lines are detected by Hough transformation. Finally, the changed houses and roads can be detected on the basis of straight line matching in candidate changed areas between registered images. Some experimental results show that the method introduced in this paper is effective. 展开更多
关键词 change detection aerial images URBAN
下载PDF
Exploring Image Generation for UAV Change Detection 被引量:3
13
作者 Xuan Li Haibin Duan +1 位作者 Yonglin Tian Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第6期1061-1072,共12页
Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for mode... Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models. 展开更多
关键词 change detection computer graphics image translation simulated images synthetic images unmanned aerial vehicles(UAVs)
下载PDF
Automatic Change Detection for Road Networks from Images Based on GIS 被引量:2
14
作者 SUIHaigang LIDeren GONGJianya 《Geo-Spatial Information Science》 2003年第4期44-50,共7页
Up to now, detailedstrategies and algorithms of automaticchange detection for road networksbased on GIS have not been discussed.This paper discusses two differentstrategies of automatic change detec-tion for images wi... Up to now, detailedstrategies and algorithms of automaticchange detection for road networksbased on GIS have not been discussed.This paper discusses two differentstrategies of automatic change detec-tion for images with low resolution andhigh resolution using old GIS data,and presents a buffer detection andtracing algorithm for detecting roadfrom low-resolution images and a newprofile tracing algorithm for detectingroad from high-resolution images. Forfeature-level change detection (FL-CD), a so-called buffer detection algo-rithm is proposed to detect changes offeatures. Some ideas and algorithms ofusing GIS prior information and somecontext information such as substructures of road in high-resolution imagesto assist road detection and extractionare described in detail. 展开更多
关键词 change detection GIS buffer detection algorithm profile matching
下载PDF
USING COVARIANCE INTERSECTION FOR CHANGE DETECTION IN REMOTE SENSING IMAGES 被引量:2
15
作者 Yang Meng Zhang Gong 《Journal of Electronics(China)》 2011年第1期87-94,共8页
In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perfor... In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perform unsupervised fusion of the final fuzzy partition matrices from the Fuzzy C-Means(FCM) clustering for the feature space by applying compressed sampling to the given remote sensing images.The proposed approach exploits a CI-based data fusion of the membership function matrices,which are obtained by taking the Fuzzy C-Means(FCM) clustering of the frequency-domain feature vectors and spatial-domain feature vectors,aimed at enhancing the unsupervised change detection performance.Compressed sampling is performed to realize the image local feature sampling,which is a signal acquisition framework based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable recovery.The experimental results demonstrate that the proposed algorithm has a good change detection results and also performs quite well on denoising purpose. 展开更多
关键词 image change detection Covariance Intersection (CI) FUSION SAR image MULTI-SPECTRAL
下载PDF
Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models 被引量:2
16
作者 JIANG Liming LIAO Mingsheng ZHANG Lu LIN Hui 《Geo-Spatial Information Science》 2007年第2期111-116,共6页
An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is parti... An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method. 展开更多
关键词 change detection multitemporal SAR image Markov random field EM algorithm
下载PDF
Change Detection Based on DSM and Image Features in Urban Areas 被引量:1
17
作者 LIU Zhifang ZHANG Jianqing ZHANG Zuxun FAN Hong LIU Zhifang, Ph.D candidate, Institute of Image & Graphic, Sichuan University, Chengdu 610064, China. 《Geo-Spatial Information Science》 2003年第2期35-41,共7页
On the basis of stereo image analysis, the change detection of man-made objects in urban areas is introduced. Information of the height of man-made objects can be applied to reinforce their change detection. By compar... On the basis of stereo image analysis, the change detection of man-made objects in urban areas is introduced. Information of the height of man-made objects can be applied to reinforce their change detection. By comparison between the new and old DSMs, the changed regions are extracted. However, our aim is to detect changes of man-made objects in urban area and further in the potential areas by the means of line-feature matching and gradient direction histogram. The experiments based on the aerial images from Japan have proven that the algorithm is correct and efficient. 展开更多
关键词 change detection DSM gradient direction histogram image matching housedetection
下载PDF
A Novel Unsupervised Change Detection Method with Structure Consistency and GFLICM Based on UAV Images 被引量:3
18
作者 Wensong LIU Xinyuan JI +2 位作者 Jie LIU Fengcheng GUO Zongqiao YU 《Journal of Geodesy and Geoinformation Science》 2022年第1期91-102,共12页
With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interf... With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods. 展开更多
关键词 change detection UAV images graph model structural consistency Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)
下载PDF
Change Detection of Land Use and Land Cover over a Period of 20 Years in Papua New Guinea 被引量:2
19
作者 Sailesh Samanta Dilip Kumar Pal 《Natural Science》 2016年第3期138-151,共14页
People have an inherent tenacity to throng coastal regions in pursuit of better living conditions. As such the brisk dynamism of land use/land cover activities in a coastal region becomes obvious. The former keeps cha... People have an inherent tenacity to throng coastal regions in pursuit of better living conditions. As such the brisk dynamism of land use/land cover activities in a coastal region becomes obvious. The former keeps changing rapidly due to burgeoning population. A digital change detection analysis is performed with the help of Geographic Information System (GIS) on the Remote Sensing data spanning over last 20 years, complemented by in-situ data and ground truth information. This current research briefly endeavours to find out the nature of change happening in the major three coastal cities of Papua New Guinea (PNG), namely Alotau, capital of Milnebay province;Lae, capital of Morobe province and Port Moresby, capital of Papua New Guinea. Changes in land use and land cover that took place over 20 years have been recorded using Landsat 5 thematic mapper (TM) data of 1992 and Landsat 8 operational land imager (OLI) data. Land use and land cover maps of 1992, and 2013/14, and change detection matrix of 1992-2013/14 are derived. Results show an immensely sprawling urban landscape, evincing about five times growth during 1992 to 2014. At the same time “natural forests” dwindled by 444.96 hectares in Alotau, 6977.25 hectares in Lae and “mangrove” and “grass/shrub land” decreased by 127.78 and 4859.39 hectares respectively around Port Moresby. The above changes owe to ever increasing population pressure, land tenure shift, agriculture and industrial development. 展开更多
关键词 Land Use and Land Cover Accuracy Assessment change detection Remote Sensing
下载PDF
Ground characterization and roof mapping: Online sensor signal-based change detection 被引量:2
20
作者 Bahrampour Soheil Rostami Jamal +2 位作者 Ray Asok Naeimipour Ali Collins Craig 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期905-913,共9页
Measurement while drilling systems are becoming an important part of excavation operations for rock characterization and ground support design that require reliable information on rock strength and location & frequen... Measurement while drilling systems are becoming an important part of excavation operations for rock characterization and ground support design that require reliable information on rock strength and location & frequency of joints or voids. This paper focuses on improving rock characterization algorithms for instrumented roof-boRer systems. For this purpose, an improved void detection algorithm is proposed, where the underlying theory is built upon the concept of mean change detection based on the feed pressure signals. In addition, the application of acoustic sensing for void detection is examined and it is shown that the variance of the filtered acoustic signal is correlated to the strength of the material being drilled. The proposed algorithm has been validated on the data collected from full-scale drilling tests in various concrete and rock samples at the J. H. Fletcher facility. 展开更多
关键词 Measurement while drilling systemsRoof mappingVoid detectionOnline change detection
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部