Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis...Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding.展开更多
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced...Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections,such as urinary tract infections and stroke-associated pneumonia,worsening prognosis.Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains,refolding misfolded proteins,and targeting misfolded proteins for degradation.Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones,cochaperones,and their associated pathways.This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.展开更多
Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the different...Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies.展开更多
Protein folding in crowding cellular environment often relies on the assistance of various chaperones. Hsp70 is one of the most ubiquitous chaperones in cells. Previous studies showed that the chaperone–client intera...Protein folding in crowding cellular environment often relies on the assistance of various chaperones. Hsp70 is one of the most ubiquitous chaperones in cells. Previous studies showed that the chaperone–client interactions at the open state tend to remodel the protein folding energy landscape and direct the protein folding as a foldase. In this work, we further investigate how the chaperone–client interaction strength modulates the foldase function of Hsp70 by using molecular simulations. The results showed that the time of substrate folding(including the whole folding step and substrate release step) has a non-monotonic dependence on the interaction strength. With the increasing of the chaperone–client interaction strength, the folding time decreases first, and then increases. More detailed analysis showed that when the chaperone–client interaction is too strong, even small number of chaperones–client contacts can maintain the substrate bound with the chaperone. The sampling of the transient chaperones–client complex with sparse inter-molecule contacts makes the client protein have chance to access the misfolded state even it is bound with chaperone. The current results suggest that the interaction strength is an important factor controlling the Hsp70 chaperoning function.展开更多
目的探讨癌组织微小RNA-218(miR-218)联合组蛋白伴侣抗沉默功能蛋白1B(ASF1B)预测前列腺癌根治术后患者复发的价值。方法前瞻性选取2021年1月至2023年5月新乡医学院第一附属医院收治的252例前列腺癌患者作为研究对象,所有患者均实施前...目的探讨癌组织微小RNA-218(miR-218)联合组蛋白伴侣抗沉默功能蛋白1B(ASF1B)预测前列腺癌根治术后患者复发的价值。方法前瞻性选取2021年1月至2023年5月新乡医学院第一附属医院收治的252例前列腺癌患者作为研究对象,所有患者均实施前列腺癌根治术,术后接受为期1年的随访,根据术后1年复发情况分为复发组50例和未复发组202例。比较癌组织、癌旁组织及两组患者癌组织miR-218、ASF1B m RNA表达水平。采用多因素Logistic回归分析癌组织miR-218、ASF1B m RNA对术后复发风险的影响;采用受试者工作特征(ROC)曲线分析癌组织miR-218、ASF1B m RNA表达水平联合预测术后复发风险的价值。结果癌组织miR-218表达水平为0.47±0.13,明显低于癌旁组织的0.86±0.21,而癌组织ASF1B mRNA表达水平为1.54±0.49,明显高于癌旁组织的1.05±0.18,差异均有统计学意义(P<0.05);复发组患者癌组织的miR-218表达水平为0.25±0.08,明显低于未复发组的0.52±0.17,而ASF1B m RNA表达水平为2.03±0.66,明显高于未复发组的1.42±0.46,差异均有统计学意义(P<0.05);经多因素Logistic回归分析结果显示,校正了术后病理分期、术前PSA、术后切缘阳性后,癌组织miR-218、ASF1B mRNA仍是术后复发的独立相关影响因素(P<0.05);经ROC分析结果显示,癌组织miR-218、ASF1B m RNA及联合检测预测术后复发的ROC曲线下面积(AUC)为0.803、0.824、0.936,联合检测的AUC大于miR-218、ASF1B mRNA,差异均有统计学意义(P<0.05)。结论癌组织miR-218、ASF1B m RNA表达与前列腺癌根治术后复发风险独立相关,联合检测抑癌因子miR-218和促癌因子ASF1B m RNA能提高对患者术后复发的预测价值,为前列腺癌根治术后分层管理、治疗决策等提供重要的参考依据。展开更多
Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods...Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods Two-vesseloccluded transient global ischemia rat model was used. The rats were divided into sublethal 3-min ischemia group, lethal 10- min ischemia group and ischemic preconditioning group. Neuronal death in the CA1 region was observed by hematoxylineosin staining, and number of live neurons was assessed by cell counting under a light microscope. Immunochemistry and laser scanning confocal microscopy were used to observe the distribution of chaperone hsp70 in the CA1 neurons. Differential centrifuge was used to isolate cytosol, nucleus and protein aggregates fractions. Western blot was used to analyze the quantitative alterations of protein aggregates and inducible chaperone hsp70 in cellular fractions and in protein aggregates under different ischemic conditions. Results Histological examination showed that ischemic preconditioning significantly reduced delayed neuronal death in the hippocampus CA1 region (P 〈 0.01 vs 10-min ischemia group). Sublethal ischemic preconditioning induced chaperone hsp70 expression in the CA1 neurons after 24 h reperfusion following 10-min ischemia. Induced-hsp70 combined with the abnormal proteins produced during the secondary lethal 10-min ischemia and inhibited the formation of cytotoxic protein aggregates(P〈0.01 vs 10-min ischemia group).Conelusion Ischemic preconditioning induced chaperone hsp70 expression and inhibited protein aggregates formation in the CA1 neurons when suffered secondary lethal ischemia, which may protect neurons from death.展开更多
Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to prote...Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation,cell division,and migration.HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy.In line with this function,the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation.In cancer,HSPB8 has a dual role being capable of exerting either a pro-or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation.Moreover,HSPB8 exerts a protective function in different diseases by modulating the inflammatory response,which characterizes not only neurodegenerative diseases,but also other chronic or acute conditions affecting the nervous system,such as multiple sclerosis and intracerebellar hemorrhage.Of note,HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases.This is the case of cognitive impairment related to diabetes mellitus,in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis.This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions,focusing on the beneficial effects of its modulation.Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed,emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.展开更多
PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different patho...PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.展开更多
文摘Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding.
基金the National Natural Science Foundation of China,Nos.82172147(to YL),81571880(to YL),81373147(to YL),30901555(to JZ),30972870(to YL)the Natural Science Foundation of Hunan Province,Nos.2021JJ30900,2016JJ2157(both to YL)。
文摘Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections,such as urinary tract infections and stroke-associated pneumonia,worsening prognosis.Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains,refolding misfolded proteins,and targeting misfolded proteins for degradation.Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones,cochaperones,and their associated pathways.This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
文摘Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11305139 and 11974173)the HPC Center of Nanjing University。
文摘Protein folding in crowding cellular environment often relies on the assistance of various chaperones. Hsp70 is one of the most ubiquitous chaperones in cells. Previous studies showed that the chaperone–client interactions at the open state tend to remodel the protein folding energy landscape and direct the protein folding as a foldase. In this work, we further investigate how the chaperone–client interaction strength modulates the foldase function of Hsp70 by using molecular simulations. The results showed that the time of substrate folding(including the whole folding step and substrate release step) has a non-monotonic dependence on the interaction strength. With the increasing of the chaperone–client interaction strength, the folding time decreases first, and then increases. More detailed analysis showed that when the chaperone–client interaction is too strong, even small number of chaperones–client contacts can maintain the substrate bound with the chaperone. The sampling of the transient chaperones–client complex with sparse inter-molecule contacts makes the client protein have chance to access the misfolded state even it is bound with chaperone. The current results suggest that the interaction strength is an important factor controlling the Hsp70 chaperoning function.
文摘目的探讨癌组织微小RNA-218(miR-218)联合组蛋白伴侣抗沉默功能蛋白1B(ASF1B)预测前列腺癌根治术后患者复发的价值。方法前瞻性选取2021年1月至2023年5月新乡医学院第一附属医院收治的252例前列腺癌患者作为研究对象,所有患者均实施前列腺癌根治术,术后接受为期1年的随访,根据术后1年复发情况分为复发组50例和未复发组202例。比较癌组织、癌旁组织及两组患者癌组织miR-218、ASF1B m RNA表达水平。采用多因素Logistic回归分析癌组织miR-218、ASF1B m RNA对术后复发风险的影响;采用受试者工作特征(ROC)曲线分析癌组织miR-218、ASF1B m RNA表达水平联合预测术后复发风险的价值。结果癌组织miR-218表达水平为0.47±0.13,明显低于癌旁组织的0.86±0.21,而癌组织ASF1B mRNA表达水平为1.54±0.49,明显高于癌旁组织的1.05±0.18,差异均有统计学意义(P<0.05);复发组患者癌组织的miR-218表达水平为0.25±0.08,明显低于未复发组的0.52±0.17,而ASF1B m RNA表达水平为2.03±0.66,明显高于未复发组的1.42±0.46,差异均有统计学意义(P<0.05);经多因素Logistic回归分析结果显示,校正了术后病理分期、术前PSA、术后切缘阳性后,癌组织miR-218、ASF1B mRNA仍是术后复发的独立相关影响因素(P<0.05);经ROC分析结果显示,癌组织miR-218、ASF1B m RNA及联合检测预测术后复发的ROC曲线下面积(AUC)为0.803、0.824、0.936,联合检测的AUC大于miR-218、ASF1B mRNA,差异均有统计学意义(P<0.05)。结论癌组织miR-218、ASF1B m RNA表达与前列腺癌根治术后复发风险独立相关,联合检测抑癌因子miR-218和促癌因子ASF1B m RNA能提高对患者术后复发的预测价值,为前列腺癌根治术后分层管理、治疗决策等提供重要的参考依据。
基金the grants from the Department of Science and Technology of Jilin Province, China (No. 20070721)the Bureau of Science and Technology of Changchun, Jilin Province, China (No. 2007129).
文摘Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods Two-vesseloccluded transient global ischemia rat model was used. The rats were divided into sublethal 3-min ischemia group, lethal 10- min ischemia group and ischemic preconditioning group. Neuronal death in the CA1 region was observed by hematoxylineosin staining, and number of live neurons was assessed by cell counting under a light microscope. Immunochemistry and laser scanning confocal microscopy were used to observe the distribution of chaperone hsp70 in the CA1 neurons. Differential centrifuge was used to isolate cytosol, nucleus and protein aggregates fractions. Western blot was used to analyze the quantitative alterations of protein aggregates and inducible chaperone hsp70 in cellular fractions and in protein aggregates under different ischemic conditions. Results Histological examination showed that ischemic preconditioning significantly reduced delayed neuronal death in the hippocampus CA1 region (P 〈 0.01 vs 10-min ischemia group). Sublethal ischemic preconditioning induced chaperone hsp70 expression in the CA1 neurons after 24 h reperfusion following 10-min ischemia. Induced-hsp70 combined with the abnormal proteins produced during the secondary lethal 10-min ischemia and inhibited the formation of cytotoxic protein aggregates(P〈0.01 vs 10-min ischemia group).Conelusion Ischemic preconditioning induced chaperone hsp70 expression and inhibited protein aggregates formation in the CA1 neurons when suffered secondary lethal ischemia, which may protect neurons from death.
基金supported by:Fondazione Telethon-Italy(No.GGP19128 to AP)Fondazione Cariplo-Italy(No.2021-1544 to RC)+14 种基金Fondazione Italiana di Ricerca per la Sclerosi Laterale Amiotrofica(AriSLA)-Italy(No.MLOpathy to APTarget-RAN to AP)Association Française contre les Myopathies-France(AFM Telethon No.23236 to AP)Kennedy’s Disease Association-USA(2018 grant to RC2020 grant to MG)Ministero dell’Universitàe della Ricerca(MIUR)-Italy(PRIN-Progetti di ricerca di interesse nazionale(No.2017F2A2C5 to APNo.2022EFLFL8 to APNo.2020PBS5MJ to VCNo.2022KSJZF5 to VC)PRIN-Progetti di ricerca di interesse nazionale-bando 2022,PNRR finanziato dall’Unione europea-Next Generation EU,componente M4C2,investimento 1.1(No.P2022B5J32 to RC and No.P20225R4Y5 to VC)CN3:RNA-Codice Proposta:CN_00000041Tematica Sviluppo di terapia genica e farmaci con tecnologia a RNA(Centro Nazionale di Ricerca-CN3 National Center for Gene Therapy and Drugs based on RNA Technology to AP)Progetto Dipartimenti di Eccellenza(to DiSFeB)Ministero della Salute,Agenzia Italiana del Farmaco(AIFA)-Italy(Co_ALS to AP)Universitàdegli Studi di Milano(piano di sviluppo della ricerca(PSR)UNIMI-linea B(to RC and BT).
文摘Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation,cell division,and migration.HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy.In line with this function,the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation.In cancer,HSPB8 has a dual role being capable of exerting either a pro-or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation.Moreover,HSPB8 exerts a protective function in different diseases by modulating the inflammatory response,which characterizes not only neurodegenerative diseases,but also other chronic or acute conditions affecting the nervous system,such as multiple sclerosis and intracerebellar hemorrhage.Of note,HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases.This is the case of cognitive impairment related to diabetes mellitus,in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis.This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions,focusing on the beneficial effects of its modulation.Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed,emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.
基金supported by Telethon Italy award GGP15225(to RC and GM)Italian Ministry of Health award RF-2016-02362950(to RC and CZ)+1 种基金the CJD Foundation USA(to RC)the Associazione Italiana Encefalopatie da Prioni(AIEnP)(to RC).
文摘PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.