期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Remarkable carbon dioxide catalytic capture (CDCC) leading to solid-form carbon material via a new CVD integrated process (CVD-IP): An alternative route for CO_2 sequestration 被引量:5
1
作者 Wei Chu Maofei Ran +4 位作者 Xu Zhang Ning Wang Yufei Wang Heping Xie Xiusong Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期136-144,共9页
Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and c... Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide. 展开更多
关键词 carbon dioxide catalytic capture (CDCC) carbon nanotubes (CNTs) chemical vapor deposition integrated process (CVD-IP) solid-formcarbon material debating greenhouse gases (GHG) effects
下载PDF
Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method 被引量:2
2
作者 Pawel Mierczynski Sergey V.Dubkov +8 位作者 Sergey V.Bulyarskii Alexander A.Pavlov Sergey N.Skorik Alexey Yu Trifonov Agnieszka Mierczynska Eugene P.Kitsyuk Sergey A.Gavrilov Tomasz P.Maniecki Dmitry G.Gromov 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第3期472-480,共9页
Carbon nanotube (CNT) arrays were fabricated on Ct-Me-N-(O) alloys with content of Ct in the range of 6-40 at.% by chemical vapour deposition. The Ct was a catalytic metal from the group of the following elements... Carbon nanotube (CNT) arrays were fabricated on Ct-Me-N-(O) alloys with content of Ct in the range of 6-40 at.% by chemical vapour deposition. The Ct was a catalytic metal from the group of the following elements: Ni, Co, Fe, Pd, while Me was a transition metal from the group of IV-VII of the periodic table (where Me=Ti, V, Cr, Zr, Nb, Mo, Ta, W, Re). Carbon nanotubes were found to grow efficiently on the alloy surface with its composition containing Ti, V, Cr, Zr, Hf, Nb or Ta. The growth of CNTs was not observed when the alloy contained W or Re. Additions of oxygen and nitrogen in the alloy facilitated the formation of oxynitrides and catalyst extrusion on the alloy surface. Replacement of the metals in alloy composition affected the diameter of the resulting CNTs. The obtained results showed that the alloy films of varying thickness (10-500 nm) may be used for the CNTs growth. The resulting CNT material was highly homogenous and its synthesis reproducible. 展开更多
关键词 Carbon nanotubes Amorphous alloys chemical vapour deposition Catalytic processes Thin films
原文传递
Controlling the electronic structure of SnO_2 nanowires by Mo-doping
3
作者 罗志华 唐东升 +6 位作者 海阔 余芳 陈亚奇 何熊武 彭跃华 袁华军 羊亿 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期352-356,共5页
Mo-doped SnO2 (MTO) nanowires are synthesized by an in-situ doping chemical vapour deposition method. Raman scattering spectra indicate that the lattice symmetry of MTO nanowires lowers with the increase of Mo dopin... Mo-doped SnO2 (MTO) nanowires are synthesized by an in-situ doping chemical vapour deposition method. Raman scattering spectra indicate that the lattice symmetry of MTO nanowires lowers with the increase of Mo doping, which implies that Mo ions do enter into the lattice of SnO2 nanowire. Ultraviolet-visible diffuse reflectance spectra show that the band gap of MTO nanowires decreases with the increase of Mo concentration. The photoluminescence emission of SnO2 nanowires around 580~nm at room temperature can also be controlled accurately by Mo-doping, and it is extremely sensitive to Mo ions and will disappear when the atomic ratio reaches 0.46%. 展开更多
关键词 DOPING NANOSTRUCTURES chemical vapor deposition processes semiconducting materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部