In this article, morphology, structure and size controllable chitosan microspheres with high mechanical strength were synthesized by microfluidic technology combining chemical crosslinking and used as an adsorbent for...In this article, morphology, structure and size controllable chitosan microspheres with high mechanical strength were synthesized by microfluidic technology combining chemical crosslinking and used as an adsorbent for methyl orange. The synthesized adsorbents were characterized using scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR), and an Energy Dispersive Spectrometer(EDS). The effect of pH revealed that the adsorption process depended on pH and the pH variation of methyl orange solution after adsorption indicated that adsorption capacity was affected through the associated role of chitosan nature and pH variation. Experimental results suggested that the as-prepared chitosan microspheres were controlled within a narrow size distribution(coefficients of variation is 1.81%), whose adsorption capacity reached to 207 mg·g^(-1) and mechanical strength was suitable to resist forces. In addition, the adsorption isotherm was well fitted with the Langmuir model, and the adsorption kinetic was best described by the pseudo-second-order kinetic model.The high performance microfluidic-synthesized chitosan microspheres have promising potentials in the applications of removing dyes from wastewater.展开更多
An improved biosorbent of thiourea modified chitosan microsphere(TMCM) with high specific surface,favorable mechanical strength and excellent adsorption performance had been synthesized via microfluidic technology. ...An improved biosorbent of thiourea modified chitosan microsphere(TMCM) with high specific surface,favorable mechanical strength and excellent adsorption performance had been synthesized via microfluidic technology. Polyethylene glycol was used as a significant component added in aqueous solution of chitosan to produce such microspheres through droplets forming, chemical crosslinking and pores creating. For the improvement of adsorption capacity, thiourea was considered as an excellent choice in increasing amino functional group by graft modification. The SEM, FTIR and EDS were employed to detect distinct features of TMCM. Copper(Ⅱ) was used to test the adsorption performance of TMCM. The experimental results indicated that TMCM exhibited higher adsorption capacity(q_e= 60.6 mg g_(-1)) and faster adsorption rate than that non-modified chitosan microsphere(NMCM).The adsorption kinetic was described well by the pseudo-second order kinetic model, which suggested that chemical adsorption along with electrons transferring was dominant in adsorption process.展开更多
基金Supported by the National Basic Research Program of China(2014CB748500)the National Natural Science Foundation of China(51578239,51322805)
文摘In this article, morphology, structure and size controllable chitosan microspheres with high mechanical strength were synthesized by microfluidic technology combining chemical crosslinking and used as an adsorbent for methyl orange. The synthesized adsorbents were characterized using scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR), and an Energy Dispersive Spectrometer(EDS). The effect of pH revealed that the adsorption process depended on pH and the pH variation of methyl orange solution after adsorption indicated that adsorption capacity was affected through the associated role of chitosan nature and pH variation. Experimental results suggested that the as-prepared chitosan microspheres were controlled within a narrow size distribution(coefficients of variation is 1.81%), whose adsorption capacity reached to 207 mg·g^(-1) and mechanical strength was suitable to resist forces. In addition, the adsorption isotherm was well fitted with the Langmuir model, and the adsorption kinetic was best described by the pseudo-second-order kinetic model.The high performance microfluidic-synthesized chitosan microspheres have promising potentials in the applications of removing dyes from wastewater.
基金support by National Basic Research Program of China(No.2014CB748500)National Natural Science Foundation of China(Nos.51578239,51322805)
文摘An improved biosorbent of thiourea modified chitosan microsphere(TMCM) with high specific surface,favorable mechanical strength and excellent adsorption performance had been synthesized via microfluidic technology. Polyethylene glycol was used as a significant component added in aqueous solution of chitosan to produce such microspheres through droplets forming, chemical crosslinking and pores creating. For the improvement of adsorption capacity, thiourea was considered as an excellent choice in increasing amino functional group by graft modification. The SEM, FTIR and EDS were employed to detect distinct features of TMCM. Copper(Ⅱ) was used to test the adsorption performance of TMCM. The experimental results indicated that TMCM exhibited higher adsorption capacity(q_e= 60.6 mg g_(-1)) and faster adsorption rate than that non-modified chitosan microsphere(NMCM).The adsorption kinetic was described well by the pseudo-second order kinetic model, which suggested that chemical adsorption along with electrons transferring was dominant in adsorption process.