期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury 被引量:5
1
作者 Hai-feng Mao Jun Xie +6 位作者 Jia-qin Chen Chang-fa Tang Wei Chen Bo-cun Zhou Rui Chen Hong-lin Qu Chu-zu Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期596-602,共7页
Ca^(2+) channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I(HWTX-I), a s... Ca^(2+) channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I(HWTX-I), a spider peptide toxin that blocks Ca^(2+) channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX-I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin m RNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration. 展开更多
关键词 nerve regeneration chronic cerebral ischemia aerobic exercise huwentoxin-I Notch signaling pathway calcium overload neural regeneration
下载PDF
Neuroprotective effects of kaempferol against 2VO-induced chronic cerebral ischemia in rats 被引量:3
2
作者 ZHANG Jun CHENG Xiao +5 位作者 YANG Huan YANG Yin-lin ZHAO Ting-kun WANG Qi WANG Yue-hua DU Guan-hua 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1028-1029,共2页
OBJECTIVE To investigate the effects of kaempferol(KAE)on chronic cerebral ischemia in rats.METHODS Chronic cerebral ischemia was induced in rats by permanent occlusion of bilateral common carotid arteries(2VO).Then,t... OBJECTIVE To investigate the effects of kaempferol(KAE)on chronic cerebral ischemia in rats.METHODS Chronic cerebral ischemia was induced in rats by permanent occlusion of bilateral common carotid arteries(2VO).Then,the rats with chronic cerebral ischemia were randomly divied into three groups:model group,KAE 10 and 30 mg·kg-1group.Another group rats without occlusion of common carotid arteries were used as the sham-operation group.Memory behavior was investigated by Morris water maze test.Prehensile ability was investigated by prehensile traction test.The structure of hippocampus and cortex neurons was observed with Nissel staining.In addition,the SOD activity and MDA content in brain tissue were determined.The DJ-1protein level was determined by Western blotting.RESULTS KAE 10 and 30 mg·kg-1could significantly improve cognitive impairment and prehensile traction ability(P<0.01)induced by chronic cerebral ischemia in rats.The results of the pathological analysis also suggested that KAE could ameliorate the pathological damage induced by chronic cerebral ischemia.In addition,KAE 30 mg·kg-1significantly increased the activity of SOD(P<0.05),but had no effect on the content of MDA in rat brain tissue.Western-blotting confirmed that KAE 10 and30 mg·kg-1could increase the expression of anti-oxidation proteins DJ-1 in hippocampus(P<0.01).CONCLUSION KAE may attenuate the chronic cerebral ischemic injury in rats. 展开更多
关键词 KAEMPFEROL chronic cerebral ischemia occlusion of bilateral common carotid arteries
下载PDF
Qinzhi Zhudan formula improves memory and alleviates neuroinflammation in vascular dementia rats partly by inhibiting the TNFR1-mediated TNF pathway
3
作者 Shuling Liu Fafeng Cheng +7 位作者 Beida Ren Wenxiu Xu Congai Chen Chongyang Ma Xiaole Zhang Feifei Tang Qingguo Wang Xueqian Wang 《Journal of Traditional Chinese Medical Sciences》 CAS 2022年第3期298-310,共13页
Objective: The Qinzhi Zhudan formula(QZZD) exhibits a prominent therapeutic effect in the treatment of vascular dementia(VaD). This study combined a network pharmacology approach and experimental validation to identif... Objective: The Qinzhi Zhudan formula(QZZD) exhibits a prominent therapeutic effect in the treatment of vascular dementia(VaD). This study combined a network pharmacology approach and experimental validation to identify the underlying biological mechanism of QZZD against VaD.Methods: Male Wistar rats received bilateral common carotid artery occlusion(BCCAO) surgery, and after4 weeks of intragastric administration of QZZD, the therapeutic effect was assessed using the Morris water maze test and cerebral blood flow(CBF) assessment. Hematoxylin and eosin staining, Nissl staining, and electron microscopy were used to measure the histopathological changes in the neurons of rats. The effect of QZZD treatment on hippocampal neurotransmitters was assessed by high-performance liquid chromatography with electrochemical detection and liquid chromatography mass spectrometry.Immunofluorescence was used to observe VaD-induced microglia activation. The inflammatory cytokine levels were assessed by enzyme linked immunosorbent assay. Western blot was used to examine the TNFR1-mediated TNF pathway, which was screened out by network pharmacology analysis.Results: QZZD treatment alleviated pathological changes and neuronal damage in VaD rats and attenuated their cognitive impairment. In addition, QZZD increased CBF and the expression of acetylcholine and 5-hydroxytryptamine in the hippocampal region. Notably, QZZD inhibited microglial activation and the expression of IL-6 and TNF-a. Network pharmacology and western blot indicated that QZZD inhibited the levels of TNFR1, NF-κBp65, p-ERK, TNF-a, and IL-6, which are related to the TNFR1-mediated TNF signaling pathway.Conclusion: QZZD clearly improved learning and memory function, reduced brain pathological damage,elevated CBF and hippocampal neurotransmitter levels, and alleviated neuroinflammation of VaD rats partly by inhibiting the TNFR1-mediated TNF pathway, indicating its potential value in the clinical therapy of VaD. 展开更多
关键词 Vascular dementia NEUROINFLAMMATION Inflammatory cytokines MICROGLIA TNF signaling Pathway Network pharmacology cerebral blood flow chronic cerebral ischemia
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部