In this paper,we will use the embedding flows in[1],[2]to give a complete descrip- tion of the smooth centralizers and iterate radicals of all C^r(r≥2)Morse-Smale diffeomorphisms of the circle S^1.As a result,we prov...In this paper,we will use the embedding flows in[1],[2]to give a complete descrip- tion of the smooth centralizers and iterate radicals of all C^r(r≥2)Morse-Smale diffeomorphisms of the circle S^1.As a result,we prove that every centralizer is a solvable subgroup of Diff^r(S^1).展开更多
We discuss the twistor quantization problem for the classical system (V d ,A d ), represented by the phase space V d , identified with the Sobolev space H 0 1/2 (S 1,? d ) of half-differentiable vector functions on th...We discuss the twistor quantization problem for the classical system (V d ,A d ), represented by the phase space V d , identified with the Sobolev space H 0 1/2 (S 1,? d ) of half-differentiable vector functions on the circle, and the algebra of observables A d , identified with the semi-direct product of the Heisenberg algebra of V d and the algebra Vect(S 1) of tangent vector fields on the circle.展开更多
基金Supported by the Natural Science Foundation of Tsinghua University.
文摘In this paper,we will use the embedding flows in[1],[2]to give a complete descrip- tion of the smooth centralizers and iterate radicals of all C^r(r≥2)Morse-Smale diffeomorphisms of the circle S^1.As a result,we prove that every centralizer is a solvable subgroup of Diff^r(S^1).
基金supported by the RFBR(Grant Nos.06-02-04012,08-01-00014)the program of Support of Scientific Schools(Grant No.NSH-3224.2008.1)Scientific Program of RAS"Nonlinear Dynamics"
文摘We discuss the twistor quantization problem for the classical system (V d ,A d ), represented by the phase space V d , identified with the Sobolev space H 0 1/2 (S 1,? d ) of half-differentiable vector functions on the circle, and the algebra of observables A d , identified with the semi-direct product of the Heisenberg algebra of V d and the algebra Vect(S 1) of tangent vector fields on the circle.