The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbit...The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.展开更多
Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classic...Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.展开更多
It’s a very popular issue regarding the minimum cost spanning tree which is of great practical and economical significance to solve it in a concise and accelerated way. In this paper, the basic ideas of Kruskal algor...It’s a very popular issue regarding the minimum cost spanning tree which is of great practical and economical significance to solve it in a concise and accelerated way. In this paper, the basic ideas of Kruskal algorithm were discussed and then presented a new improved algorithm—two branch Kruskal algorithm, which is improved to choose a middle value. Finally, because the time complexity is reduced, and the process is more convenient, it is concluded that the improved Kruskal algorithm is more effective in most cases compared with the Kruskal algorithm.展开更多
Motion simulator usually appears the phenomenon of false cues and the workspace is limited in the process of washout. The proposed washout algorithm combines fuzzy logic control with the vestibular system to design th...Motion simulator usually appears the phenomenon of false cues and the workspace is limited in the process of washout. The proposed washout algorithm combines fuzzy logic control with the vestibular system to design the tilt coordination fuzzy adaptive filter, in order to minimize the vestibular sensory error below the human perception threshold. Owing to tilt coordination angular velocity limiter, the loss of low-pass acceleration must be compensated by the acceleration transform model. The translational channel decreases the possibility of the workspace beyond limitation and expands the scope of motion platform simulating input acceleration by using third-order filter. The simulation results show that the proposed algorithm can effectively overcome the phase retardation of classical washout algorithm, and then prevent the produce of false cues, decrease the displacement of motion platform simultaneously; in addition, white Gaussian noise simulates large variations in acceleration. The proposed washout algorithm can have maximal extreme value of acceleration and accurate simulating performance in general. It also proves that the proposed washout algorithm has a strong adaptability and reliability, which can effectively improve the dynamic fidelity for motion simulator.展开更多
In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex ...In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.展开更多
Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Altho...Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field.展开更多
In this paper,the(1+1)-dimensional classical Boussinesq-Burgers(CBB)system is extended to a(4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm.The Lax integrability,symmetry integ...In this paper,the(1+1)-dimensional classical Boussinesq-Burgers(CBB)system is extended to a(4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm.The Lax integrability,symmetry integrability and a large number of reduced systems of the new higher-dimensional system are given.Meanwhile,for illustration,an exact solution of a(1+1)-dimensional reduced system is constructed from the viewpoint of Lie symmetry analysis and the power series method.展开更多
基金supported by National Natural Science Foundation of China (Nos. 11975068 and 11925501)the National Key R&D Program of China (No. 2022YFE03090000)the Fundamental Research Funds for the Central Universities (No. DUT22ZD215)。
文摘The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504024,61502041,61602045 and 61602046the National Key Research and Development Program of China under Grant No 2016YFA0302600
文摘Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.
文摘It’s a very popular issue regarding the minimum cost spanning tree which is of great practical and economical significance to solve it in a concise and accelerated way. In this paper, the basic ideas of Kruskal algorithm were discussed and then presented a new improved algorithm—two branch Kruskal algorithm, which is improved to choose a middle value. Finally, because the time complexity is reduced, and the process is more convenient, it is concluded that the improved Kruskal algorithm is more effective in most cases compared with the Kruskal algorithm.
基金Funded by the National Natural Science Foundation of China(U1233107)Civil Aviation Science and Technology Innovation Project of China(MHRD20140210)
文摘Motion simulator usually appears the phenomenon of false cues and the workspace is limited in the process of washout. The proposed washout algorithm combines fuzzy logic control with the vestibular system to design the tilt coordination fuzzy adaptive filter, in order to minimize the vestibular sensory error below the human perception threshold. Owing to tilt coordination angular velocity limiter, the loss of low-pass acceleration must be compensated by the acceleration transform model. The translational channel decreases the possibility of the workspace beyond limitation and expands the scope of motion platform simulating input acceleration by using third-order filter. The simulation results show that the proposed algorithm can effectively overcome the phase retardation of classical washout algorithm, and then prevent the produce of false cues, decrease the displacement of motion platform simultaneously; in addition, white Gaussian noise simulates large variations in acceleration. The proposed washout algorithm can have maximal extreme value of acceleration and accurate simulating performance in general. It also proves that the proposed washout algorithm has a strong adaptability and reliability, which can effectively improve the dynamic fidelity for motion simulator.
基金Science Foundation of Beijing Key LaboratoryUnder Grant No. EESR2004-4
文摘In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.
基金support from the Youth Talent Lifting Project(Grant No.2020-JCJQ-QT-030)the National Natural Science Foundation of China(Grant Nos.11905294,and 12274464)+7 种基金the China Postdoctoral Science Foundation,and the Open Research Fund from State Key Laboratory of High Performance Computing of China(Grant No.201901-01)support from the National Natural Science Foundation of China(Grant Nos.11805279,12074117,61833010,and 12061131011)support from the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the National Natural Science Foundation of China(Grant Nos.61832003,61872334,and 61801459)the National Natural Science Foundation of China(Grant No.12005015)the National Natural Science Foundation of China(Grant Nos.11974205,and 11774197)the National Key Research and Development Program of China(Grant No.2017YFA0303700)the Key Research and Development Program of Guangdong Province(Grant No.2018B030325002).
文摘Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871396,12271433).
文摘In this paper,the(1+1)-dimensional classical Boussinesq-Burgers(CBB)system is extended to a(4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm.The Lax integrability,symmetry integrability and a large number of reduced systems of the new higher-dimensional system are given.Meanwhile,for illustration,an exact solution of a(1+1)-dimensional reduced system is constructed from the viewpoint of Lie symmetry analysis and the power series method.