Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as a...Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as arid areas with a lack of clean water.Here,the use of the range groundwater supply against seawater intrusion means that the water consumed by the community tastes salty and brackish.The availability of abundant seawater,processed through desalination technology,can be used to meet the daily clean water needs of coastal communities.Sustainable development goal(SDG)6 Water and Sanitation is concerned with ensuring that everyone has access to clean water and sanitation.In this regard,desalination technology is considered viable to achieve the SDGs in the environmental sector.Some countries have focused on using desalination technology to achieve target 6.4 by 2030.This goal aims to improve the efficiency of water use to reduce the number of people experiencing clean water scarcity by ensuring a sustainable supply of fresh water.The objective of this study is to examine the application of seawater desalination technology for clean water in the Kingdom of Saudi Arabia(KSA)and Indonesia,and identify the implications of desalination policies in these countries.Comparative studies were conducted using secondary data and literature studies on transforming seawater into clean water with technology.KSA applies seawater desalination technology to meet water needs.However,in Indonesia,policymaking has not holistically examined the potential of using seawater desalination technology for clean water.Until now,unlike in the KSA,Indonesia has not addressed the importance of the use of desalination technology in state policy.展开更多
Crop and livestock production are essential to maintain food security.In China,crop and livestock production were integrated in the past.Today,small backyard systems are still integrated but the larger livestock farms...Crop and livestock production are essential to maintain food security.In China,crop and livestock production were integrated in the past.Today,small backyard systems are still integrated but the larger livestock farms are landless and largely geographically separated from crop production systems.As a result,there is less recycling of animal manures and there are lower nutrient use efficiencies in the Chinese food production systems.This,in turn,results in considerable losses of nutrients,causing water pollution and harmful algal blooms in Chinese lakes,rivers and seas.To turn the tide,there is a need for agricultural“green”development for food production through reintegrating crop and livestock production.An additional wish is to turn the Chinese water systems“blue”to secure clean water for current and future generations.In this paper,current knowledge is summarized to identify promising interventions for reintegrating crop and livestock production toward clean water.Technical,social,economic,policy and environmental interventions are addressed and examples are given.The paper highlights recommended next steps to achieve“green”agriculture and“blue”water in China.展开更多
The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocata...The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage.展开更多
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom...In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.展开更多
Water has always been an important and life-sustaining drink to humans and is essential to the survival of all known organisms. Over large parts of the world, humans have inadequate access to drinking water and use wa...Water has always been an important and life-sustaining drink to humans and is essential to the survival of all known organisms. Over large parts of the world, humans have inadequate access to drinking water and use water contaminated with disease vectors, pathogens or unacceptable levels of toxins or suspended solids. Drinking such water or using it in food preparation leads to widespread, acute and chronic illnesses and is a major cause of death and misery in many countries. The UN estimates that over 2.0 billion people have limited access to safe water and nearly 800 million people lack even the most basic supply of clean water. The main issue is the affordability of water purifying systems. Many people rely on boiling water or bottled water, which can be expensive. Therefore, technologies that are cost effective, sustainable, ease of operation/maintenance and the treatment processes with locally available materials are required. In this article, some unique low-cost sustainable technologies available/or in-use, i.e. natural filtration, riverbank filtration, biosand filtration, membrane filtration, solar water disinfection technique, biologically degradable materials such as moringa powder, scallop powder treatment, and biosand pitcher treatments have been discussed.展开更多
In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle c...In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a blue-colored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.展开更多
The instruments developed by the Clean Technology Network of Bahia (TECLIM) at the Federal University of Bahia (UFBA) (cited in Part 1 of this paper) are presented. Factors regarding water management in industry were ...The instruments developed by the Clean Technology Network of Bahia (TECLIM) at the Federal University of Bahia (UFBA) (cited in Part 1 of this paper) are presented. Factors regarding water management in industry were examined, on the basis of experience acquired over the period of a decade in cooperative research projects with large industrial process plants located mostly in the Camacari Petrochemical Complex, Bahia State, Brazil. The main results consist of training about 1700 industry professionals in CP, the identification of about 500 ideas for the rationalization of water use, the presentation and publication of 90 articles in journals, conferences and other academic events, identification of ideas with potential water savings estimated at around 1400 t·h–1 and the reduction of at least 500 t·h–1 in effluents. Other sectors that make use of water, for example public buildings, commercial buildings, homes, shopping centers and airports can adapt and use the TECLIM method as will be exemplified.展开更多
Based on cleaner production concepts, a method for water use minimization has been developed by the Clean Technology Network of Bahia (TECLIM) at one of the largest industrial complexes in Latin America located in the...Based on cleaner production concepts, a method for water use minimization has been developed by the Clean Technology Network of Bahia (TECLIM) at one of the largest industrial complexes in Latin America located in the State of Bahia, Brazil. This method is concerned with an area of secondary interest to the productive sector: the use of water. Based on the best cleaner production principles (CP), nine instruments have been developed during cooperative projects with chemical, petrochemical and copper metallurgical industries. These instruments are described in Part 2 of this paper [1]. The main benefits derived from partnership schemes include: a reduction in water consumption and effluent generation;the development of a techno-operational culture to increase eco-efficiency;and the introduction of conceptual projects to ensure the continuity of the activities in the company after the projects have been completed. The specific consumption of water was reduced by 20% as a consequence of the application of this method in Company A;a specific reduction in the generation of effluents of more than 40% was observed in Company B;a 42% fall in fresh water consumption in Company C;and a 20% decrease in the cost of effluent treatment in Company D. Among the difficulties encountered were the limited time availability of the operators and engineers for the project, the lack of measurement and calibration of available flow meters and the lack of detailed technical data.展开更多
文摘Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as arid areas with a lack of clean water.Here,the use of the range groundwater supply against seawater intrusion means that the water consumed by the community tastes salty and brackish.The availability of abundant seawater,processed through desalination technology,can be used to meet the daily clean water needs of coastal communities.Sustainable development goal(SDG)6 Water and Sanitation is concerned with ensuring that everyone has access to clean water and sanitation.In this regard,desalination technology is considered viable to achieve the SDGs in the environmental sector.Some countries have focused on using desalination technology to achieve target 6.4 by 2030.This goal aims to improve the efficiency of water use to reduce the number of people experiencing clean water scarcity by ensuring a sustainable supply of fresh water.The objective of this study is to examine the application of seawater desalination technology for clean water in the Kingdom of Saudi Arabia(KSA)and Indonesia,and identify the implications of desalination policies in these countries.Comparative studies were conducted using secondary data and literature studies on transforming seawater into clean water with technology.KSA applies seawater desalination technology to meet water needs.However,in Indonesia,policymaking has not holistically examined the potential of using seawater desalination technology for clean water.Until now,unlike in the KSA,Indonesia has not addressed the importance of the use of desalination technology in state policy.
基金support of the Dutch Talent Program Veni-NWO projects of Maryna Strokal(0.16.Veni.198.001)and Annette B.G.Janssen(VI.Veni.194.002)We also acknowledge the KNAW-MOST project“Sustainable Resource Management for Adequate and Safe Food Provision(SURE+)”(PSA-SA-E-01)The National Key Research and Development Program of China(2016YFE0103100).
文摘Crop and livestock production are essential to maintain food security.In China,crop and livestock production were integrated in the past.Today,small backyard systems are still integrated but the larger livestock farms are landless and largely geographically separated from crop production systems.As a result,there is less recycling of animal manures and there are lower nutrient use efficiencies in the Chinese food production systems.This,in turn,results in considerable losses of nutrients,causing water pollution and harmful algal blooms in Chinese lakes,rivers and seas.To turn the tide,there is a need for agricultural“green”development for food production through reintegrating crop and livestock production.An additional wish is to turn the Chinese water systems“blue”to secure clean water for current and future generations.In this paper,current knowledge is summarized to identify promising interventions for reintegrating crop and livestock production toward clean water.Technical,social,economic,policy and environmental interventions are addressed and examples are given.The paper highlights recommended next steps to achieve“green”agriculture and“blue”water in China.
基金Scientific Research Fund of Zhejiang Provincial Education Department(Y202250501)SRT Research Project of Jiaxing Nanhu University。
文摘The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage.
基金the National Natural Science Foundation of China(No.21776319 and No.21476269).
文摘In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.
文摘Water has always been an important and life-sustaining drink to humans and is essential to the survival of all known organisms. Over large parts of the world, humans have inadequate access to drinking water and use water contaminated with disease vectors, pathogens or unacceptable levels of toxins or suspended solids. Drinking such water or using it in food preparation leads to widespread, acute and chronic illnesses and is a major cause of death and misery in many countries. The UN estimates that over 2.0 billion people have limited access to safe water and nearly 800 million people lack even the most basic supply of clean water. The main issue is the affordability of water purifying systems. Many people rely on boiling water or bottled water, which can be expensive. Therefore, technologies that are cost effective, sustainable, ease of operation/maintenance and the treatment processes with locally available materials are required. In this article, some unique low-cost sustainable technologies available/or in-use, i.e. natural filtration, riverbank filtration, biosand filtration, membrane filtration, solar water disinfection technique, biologically degradable materials such as moringa powder, scallop powder treatment, and biosand pitcher treatments have been discussed.
文摘In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a blue-colored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.
文摘The instruments developed by the Clean Technology Network of Bahia (TECLIM) at the Federal University of Bahia (UFBA) (cited in Part 1 of this paper) are presented. Factors regarding water management in industry were examined, on the basis of experience acquired over the period of a decade in cooperative research projects with large industrial process plants located mostly in the Camacari Petrochemical Complex, Bahia State, Brazil. The main results consist of training about 1700 industry professionals in CP, the identification of about 500 ideas for the rationalization of water use, the presentation and publication of 90 articles in journals, conferences and other academic events, identification of ideas with potential water savings estimated at around 1400 t·h–1 and the reduction of at least 500 t·h–1 in effluents. Other sectors that make use of water, for example public buildings, commercial buildings, homes, shopping centers and airports can adapt and use the TECLIM method as will be exemplified.
文摘Based on cleaner production concepts, a method for water use minimization has been developed by the Clean Technology Network of Bahia (TECLIM) at one of the largest industrial complexes in Latin America located in the State of Bahia, Brazil. This method is concerned with an area of secondary interest to the productive sector: the use of water. Based on the best cleaner production principles (CP), nine instruments have been developed during cooperative projects with chemical, petrochemical and copper metallurgical industries. These instruments are described in Part 2 of this paper [1]. The main benefits derived from partnership schemes include: a reduction in water consumption and effluent generation;the development of a techno-operational culture to increase eco-efficiency;and the introduction of conceptual projects to ensure the continuity of the activities in the company after the projects have been completed. The specific consumption of water was reduced by 20% as a consequence of the application of this method in Company A;a specific reduction in the generation of effluents of more than 40% was observed in Company B;a 42% fall in fresh water consumption in Company C;and a 20% decrease in the cost of effluent treatment in Company D. Among the difficulties encountered were the limited time availability of the operators and engineers for the project, the lack of measurement and calibration of available flow meters and the lack of detailed technical data.