In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power s...In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.展开更多
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio...In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.展开更多
The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a c...The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER).展开更多
基金This work is supported by Shanghai Science and Technology Planning Project(Project No.20040501200).
文摘In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.
基金Projects(20976048, 21176072) supported by the National Natural Science Foundation of ChinaProject provided by the Fundamental Research Fund for Central Universities
文摘In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.
文摘The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER).