期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Improvement of Methane Production from Corn Stalk for Whole Slurry Anaerobic Co-digestion Under Hydrothermal Wastewater Pretreatment
1
作者 Sun Yong Wang Ze-hao +3 位作者 Qu Jing-bo Cao Guang-li Zheng Guo-xiang Sun Jia-zheng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期44-55,共12页
Corn stalk hydrothermal wastewater(CSHW)was used as a pretreatment for whole-slurry anaerobic co-digestion instead of conventional acid pretreatment.CSHW pretreatment was conducted at 20℃,35℃and 50℃for 3,6 and 9 h,... Corn stalk hydrothermal wastewater(CSHW)was used as a pretreatment for whole-slurry anaerobic co-digestion instead of conventional acid pretreatment.CSHW pretreatment was conducted at 20℃,35℃and 50℃for 3,6 and 9 h,after which all experimental groups were digested at 35℃for 24 days.This pretreatment method efficiently broke the lignocellulose structure of the corn stalk.Different from the volatile fatty acids(VFAs)content,the pH and RS contents were relatively higher than those of the control during the pretreatment process.Furthermore,the highest methane production[185.03 mL•g-1 VS(volatile solid)]was achieved at 55.46%under 35℃in 6 h,which was higher than that of the normal corn stalk anaerobic digestion.The VFAs contents and pH increased compared to CK upon the addition of NaOH to adjust pH,and the RS content also increased slightly due to the degradability of lignocellulose during the whole-slurry anaerobic co-digestion.This work provided a potential method to sustainably treat wastewater and improve fermentation performance. 展开更多
关键词 PRETREATMENT anaerobic co-digestion corn stalk hydrothermal wastewater corn stalk
下载PDF
Biogas Production from Various Typical Organic Wastes Generated in the Region of Cantabria (Spain): Methane Yields and Co-Digestion Tests 被引量:1
2
作者 Carlos Rico Rubén Diego +1 位作者 Agustín Valcarce José Luis Rico 《Smart Grid and Renewable Energy》 2014年第6期128-136,共9页
Batch trials were carried out to determine the methane potential yields of some typical organic wastes generated in the region of Cantabria (Spain): cocoa shell, cheese whey and sludges from dairy industry. Anaerobic ... Batch trials were carried out to determine the methane potential yields of some typical organic wastes generated in the region of Cantabria (Spain): cocoa shell, cheese whey and sludges from dairy industry. Anaerobic co-digestion trials of these wastes with dairy manure were also investigated in batch at 35℃. Cheese whey obtained similar methane yields than dairy manure, between 17.5 and 19.3 L CH4kg-1 cheese whey compared with 18.0 L CH4kg-1 manure. Methane yields of various sludge samples collected from wastewater treatment facilities of dairy industries were influenced by its origin. Sludge samples from fat separation devices were the most productive in terms of specific methane yields compared with biological sludge from an aerobic reactor. Sludge samples from fat separator reached specific methane productivities of 350 and 388 L CH4kg-1 VS (10.5 and 24.1 L CH4kg-1 sludge), whereas biological sludge yielded 125 L CH4kg-1 VS (12.6 L CH4kg-1 sludge). The methane potential of sludge samples was influenced by solids content. Cocoa shell resulted to be an interesting waste for anaerobic digestion due to its high VS content, yielding 195 L CH4kg-1 cocoa shell. It is a waste that can considerably improve methane yields in anaerobic co-digestion with dairy manure. However, at proportions of 10% cocoa shell, the process was hindered by hydrolysis of particulate matter. Anaerobic digestion at higher temperatures (thermophilic range) could be a better option for this kind of waste. Co-digestion of 5% cocoa shell with 35% dairy sludge and 60% dairy manure resulted in 80.5% higher methane production compared to anaerobic digestion of dairy manure alone. 展开更多
关键词 CHEESE WHEY co-digestion Cocoa Shell DAIRY SLUDGE MANURE
下载PDF
Co-digestion Of Olive Mill Wastewater and Swine Manure Using Up-Flow Anaerobic Sludge Blanket Reactor for Biogas Production
3
作者 Hassan Azaizeh Jeries Jadoun 《Journal of Water Resource and Protection》 2010年第4期314-321,共8页
Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficienc... Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become major causes of health and environmental concerns. The main objective of the current work was to evaluate the efficiency of the co-digestion strategy for treatment of SW and OMW mixtures. Mesophilic batch reac-tors fed with mixtures of SW and OMW showed that the two adapted sludges Gadot and Prigat exhibited the best COD removal capacity and biogas production;therefore both were selected to seed up-flow anaerobic sludge blanket (UASB) continuous reactors. During 170 days of operation, both sludges Gadot and Prigat showed high biodegradation potential. The highest COD removal of 85-95% and biogas production of 0.55 L?g-1 COD were obtained at a mixture consisting of 33% OMW and 67% SW. Under these conditions, an organic load of 28,000 mg?L-1 COD was reduced to 1,500-3,500 mg?L-1. These results strongly suggest that co-digestion technology using UASB reactors is a highly reliable and promising technology for wastewater treatment and biogas production. 展开更多
关键词 Anaerobic co-digestion OLIVE Mill Waste Effluent Swine MANURE Biogas MESOPHILIC Tem-perature
下载PDF
Characterization of Digestates from Anaerobic Co-Digestion of Manioc Effluent, Human Urine and Cow Dung
4
作者 Kpata-Konan Nazo Edith Kouamé +4 位作者 Yao Francis Kouamé Kouamé Martin Konan Koffi Felix 《Journal of Water Resource and Protection》 2019年第6期777-788,共12页
This study focused on the characterization of digestates resulting from anaerobic digestion of manioc effluents from attiéké factories. Two types of digestate were characterized, one consisting of manioc eff... This study focused on the characterization of digestates resulting from anaerobic digestion of manioc effluents from attiéké factories. Two types of digestate were characterized, one consisting of manioc effluent + urine and another composed of manioc effluent + urine + cow dung. As a result, these residues of bio-digestion rich in nutrients (NPK) can be used as agricultural fertilizer. Moreover, the determination of some microorganisms and heavy metals digestates allowed to better appreciate its fertilizing quality. These parameters remained in accordance with the quality standards of a digestate prescribed. These results show that digestates from anaerobic co-digestion of manioc effluents, urine and cow dung can be used without fear as an agricultural biofertilizer. 展开更多
关键词 Manioc EFFLUENT Human Urine COW DUNG ANAEROBIC co-digestion DIGESTATE
下载PDF
Biogas Production from the Co-Digestion of Cornstalks with Cow Dung and Poultry Droppings
5
作者 I. J. Ona S. M. Loya +2 位作者 H. O. Agogo M. S. Iorungwa R. Ogah 《Journal of Agricultural Chemistry and Environment》 2019年第3期145-154,共10页
The Anaerobic digestion of Corn Stalk (CS) with Cow Dung (CD) and Poultry Droppings (PD) was investigated. Batch mono-digestion and Co-digestion experiments were performed with initial total solid loading of 37.5%. Th... The Anaerobic digestion of Corn Stalk (CS) with Cow Dung (CD) and Poultry Droppings (PD) was investigated. Batch mono-digestion and Co-digestion experiments were performed with initial total solid loading of 37.5%. The main objective of this work was to investigate the biogas yield at different CS to CD ratios and CS to PD ratios. Results show that the highest Cumulative Gas Yield (CGY) of 6833 mL/g of biomass was achieved in 21 days for CS-CD ratio of 2:1. Similarly high CGY of 6107 mL/g, 6100 mL/g and 5333 mL/g were obtained for CS-PD ratio of 2:1, CS-CD ratio of 1:1 and CS-PD ratio of 1:1 respectively. It is concluded that co-digestion of Cow dung or poultry droppings is beneficial for improving bio-digestibility and Biogas yield from corn stalk. The results of this work provide useful information to improve the efficiency of co-digestion of CS with CD and PD under anaerobic conditions. 展开更多
关键词 BIOGAS PRODUCTION ANAEROBIC co-digestion AGRICULTURAL RESIDUES
下载PDF
Anaerobic Co-digestion Process Efficiency Estimation in Phases as an Alternative for Municipal Waste Treatment
6
作者 María Montes Alejandra Vásquez +3 位作者 Pedro García Sergio Zamora Naim Sulvarán Viniza Ureña 《Journal of Environmental Science and Engineering(B)》 2021年第1期9-19,共11页
The incorrect disposal of the waste generated in the municipalities contributes to water and soil contamination,resulting in a real concern in order to find an adequate disposal as well as obtain by-products that can ... The incorrect disposal of the waste generated in the municipalities contributes to water and soil contamination,resulting in a real concern in order to find an adequate disposal as well as obtain by-products that can be used to reduce CO2 emissions.Anaerobic digestion turns out to be the most efficient treatment,both in environmental and economic terms.The objective of this study is to evaluate the anaerobic co-digestion process in phases as an alternative for the treatment of municipal waste:sludge from water treatment plants and the biodegradable part of Municipal Solid Waste(MSW),for three HRTs(Hydraulic Retention Times).Testing results show up a max elimination of 70.68%in VS(Volatile Solids)and 74.01%in COD(Chemical Oxygen Demand).With these percentages of elimination on average,15.96 L/d of biogas was produced,for each kg of COD eliminated 0.56 m3 of biogas was produced and for each kg of SV 0.85 m3 and methane of 50.10%. 展开更多
关键词 co-digestion METHANE municipal waste
下载PDF
Bioelectricity from Anaerobic Co-Digestion of Organic Solid Wastes and Sewage Sludge Using Microbial Fuel Cells (MFCs)
7
作者 Rasel Sheikh Sourav Karmaker +1 位作者 Mohammad Solayman Jebunnahar Mayna 《Journal of Sustainable Bioenergy Systems》 2018年第3期95-106,共12页
Recently microbial fuel cells (MFCs) have been considered as an alternative power generation technique by utilizing organic wastes. In this study, an experiment was carried out to generate bioelectricity from co-diges... Recently microbial fuel cells (MFCs) have been considered as an alternative power generation technique by utilizing organic wastes. In this study, an experiment was carried out to generate bioelectricity from co-digestion of organic waste (kitchen waste) and sewage sludge as a waste management option using microbial fuel cell (MFC) in anaerobic process. A total of five samples with different sludge-waste ratio were used with zinc (Zn) and cupper (Cu) as cell electrodes for the test. The trends of voltage generation were different for each sample in cells such as 350 mV, 263 mV, 416 mV maximum voltage were measured from sample I, II and III respectively. It was observed that the MFC with sewage sludge showed the higher values (around 960 mV) of voltages with time whereas 918 mV obtained with organic waste. Precisely comparing cases with varying the organic waste and sewage sludge ratio helps to find the best bioelectricity generation option. Using MFCs can be appeared as the solution of electricity scarcity along the world as an efficient and eco-friendly manner as well as organic solid waste and sewage sludge management. 展开更多
关键词 BIOELECTRICITY MFC Organic Waste SEWAGE SLUDGE ANAEROBIC co-digestion
下载PDF
Effect of goethite on anaerobic co-digestion process of corn straw and algae biomass
8
作者 MA Ding QIN Zhiyong +2 位作者 YUE Zhengbo CHEN Tianhu WANG Jin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期166-167,共2页
1 Introduction Recently the demand for fossil fuel has grown significantly with the rapid development of the Chinese economy.Renewable energy was developed to replace traditional fossil fuels,which would decrease
关键词 Effect of goethite on anaerobic co-digestion process of corn straw and algae biomass
下载PDF
Anaerobic Co-Digestion of Fish Processing Waste with Cow Manure and Waste of Market (Rests of Fruits and Vegetables): A Lab Scale Batch Test
9
作者 Ndèye Ndickou Kébé Christiane Rieker +5 位作者 Papa Abdoulaye Fall Djicknoum Diouf Diène Ndiaye Thomas Mockenhaupt Patrick Beuel Jamile Bursche 《Journal of Sustainable Bioenergy Systems》 2021年第1期45-59,共15页
<div style="text-align:justify;"> <span style="font-family:Verdana;">The aim of this work was to use fish processing waste (FW) as main substrate for anaerobic digestion. To enhance the... <div style="text-align:justify;"> <span style="font-family:Verdana;">The aim of this work was to use fish processing waste (FW) as main substrate for anaerobic digestion. To enhance the biogas production of FW, co-digestion was done with two other substrates: cow dung (CD) and waste of market (MW). Batch test was carried out in an 1</span><span "=""><span style="font-family:Verdana;"> L glass digester in a temperature controlled chamber at 38</span><span style="color:#4F4F4F;font-family:Verdana;">°</span><span style="font-family:Verdana;">C. The following mixtures were carried out: FW with CD respectively at different ratios 100:0% (A), 80:20%</span></span><span "=""> </span><span "="" style="font-family:Verdana;">(B) and 60:40% (C);FW with MW at the following ratio 80:20% (D);FW with CD and MW respectively at these ratios 80:10:10% (F) and 60:20:20% (G). The biogas produced was measured using a milligas counter</span><sup><span style="color:#4F4F4F;"><span style="color:#4F4F4F;font-family:Verdana;">&#174;</span><span style="font-family:Verdana;"></span></span></sup><span "="" style="font-family:Verdana;"> and the volume of gas was recorded. The gas composition was determined using gas chromatography. With a pH stable for raw substrates and mixtures, TS and VS (%TS) contents for FW were respectively 31.01% and 91.55%. Between 3 to 13 days of experimentation, the highest flow rate was observed. The percentage of methane was more important for mixtures B and D, 61% and 59% respectively. pH and VOA/T</span><span "="" style="font-family:Verdana;">IC were stable at the end of the batch test for all mixtures, meaning that the organic matter was already well digested. The highest values of Volatile Solid Removal (VSR) were found for mixtures C, D, F and G. Therefore, the promising mixtures for next experimentations in large scale are B and D.</span> </div> 展开更多
关键词 Fish Waste Batch Test co-digestion Flow Rate Organic Matter
下载PDF
Phylogenetic Analysis of Anaerobic Co-Digestion of Animal Manure and Corn Stover Reveals Linkages between Bacterial Communities and Digestion Performance
10
作者 Fan Yang Rui Chen +2 位作者 Zhengbo Yue Wei Liao Terence L. Marsh 《Advances in Microbiology》 2016年第12期879-897,共19页
Over 3 million tons of manures are produced annually in the United States and pose environmental and health risks if not remediated. Anaerobic digestion is an effective method in treating organic wastes to reduce envi... Over 3 million tons of manures are produced annually in the United States and pose environmental and health risks if not remediated. Anaerobic digestion is an effective method in treating organic wastes to reduce environmental impacts and produce methane as an alternative energy. Previous studies suggested that optimization of feed composition, hydraulic retention time, and other operational conditions can greatly improve total solids removal and increase methane productivity. These environmental factors improve functionality by altering the microbial community structure but explicit details of how the bacterial community shifts are poorly understood. Our investigations were conducted to investigate the relationship between environmental factors, microbial community structure and bioreactor efficiency by using metagenomic analysis of the microbial communities. Our results indicated that the bioreactor with the greatest methane production, digestion efficiency and reduced levels of E. coli/Shigella had a distinctive community structure at the genus level with unique and abundant uncultivated strains of Bacteroidetes. Moreover the same bioreactor was enriched in Aminomonas paucivorans and Clostridia populations that can utilize secondary metabolites produced during cellulose/hemicellulose degradation to generate hydrogen and acetate. Hence specific digestion conditions that enrich for these populations may provide a route to the optimization of co-digestion systems and control the variability in reactor performance. 展开更多
关键词 Anaerobic co-digestion BACTEROIDETES Cellulose Degrading Bacterial Community
下载PDF
Effect of Variation in Co-Digestion Ratios of Matooke, Cassava and Sweet Potato Peels on Hydraulic Retention Time, Methane Yield and Its Kinetics
11
作者 Peter Tumutegyereize Clever Ketlogetswe +1 位作者 Jerekias Gandure Noble Banadda 《Journal of Sustainable Bioenergy Systems》 2016年第4期93-115,共24页
This paper presents the results of batch anaerobic co-digestion of matooke, cassava, and sweet potato peels and vines. These agricultural wastes and others form the biggest portion of household wastes in developing co... This paper presents the results of batch anaerobic co-digestion of matooke, cassava, and sweet potato peels and vines. These agricultural wastes and others form the biggest portion of household wastes in developing countries. However, they have remained an unexploited resource amidst the ever increasing needs of clean energy and waste disposal challenges. Efforts to use them individually as biogas substrates have been associated with process acidification failure resulting from their fast hydrolysis. The aim of this work was to exploit agricultural wastes is co-digestion among themselves and assess their effect on methane yield and its kinetics, pH and hydraulic retention time (HRT). Sixteen ratios of Matooke peels (MP), cassava peels (CP) and sweet potato peels (SP) were assessed in duplicate. Methane yield and its kinetics, pH and HRT demonstrated dependence on the proportion of substrates in the mixture. Depending on the ratio mixture, HRT increased to 15 days compared to less than 5 days for single substrates, hydrolysis rate constant (k) reduced to a range of 0.1 - 0.3 d<sup>-1</sup> compared to single substrates whose k-values were above 0.5 d<sup>-1</sup>, pH was maintained in the range of 6.38 - 6.43 and CH<sub>4</sub> yield increased by 15% - 200%. Ratios 2:1:0, 2:0:1, 0:1:2, 1:1:1 and 1:1:4 were consistent all through in terms of model fitting, having a positive synergetic effect on HRT, hydrolysis rate constant, lag phase and methane yield. However, more research is needed in maintaining the pH near the neutral for process stability assurance if household wastes are to be used as standalone substrates for biogas production without being co-substrates with livestock manure. 展开更多
关键词 co-digestion Household Wastes HYDROLYSIS Methane Yield KINETICS
下载PDF
Bioenergy Production from Anaerobic Co-Digestion of Sewage Sludge and Abattoir Wastes
12
作者 Dida Aberra Fekadu Fufa 《Advances in Chemical Engineering and Science》 2016年第3期281-287,共8页
Energy is the pillar of human economic development. Several energy sources, renewable and non-renewable, have been exploited to assure and sustain the need for sustainable development. However, depletion of non-renewa... Energy is the pillar of human economic development. Several energy sources, renewable and non-renewable, have been exploited to assure and sustain the need for sustainable development. However, depletion of non-renewable energy sources forced researchers to search for alternative cost effective and environmental friendly energy sources. Thus, conversion of waste materials into energy has obtained considerable attention. In line with this, the aim of this study is to investigate the improvement of bio-energy production through anaerobic digestion of mixture of wastes from sewage sludge and abattoir sources. The abattoir waste is functioned as a co-substrate. Laboratory scale batch anaerobic co-digestion of the waste is carried out under mesophilic condition for 20 days. Sewage Sludge (SS) alone, and different mix ratios of SS to Abattoir Waste (AW) were analyzed for bioenergy production. Besides, the nutrient values and reduction in volume of the sewage after digestion were determined. The results show that methane productions of 33.8%, 48.3% and 56.9% were obtained for SS alone and for SS:AW mix ratios of 4:1 and 3:2, respectively. The nutrient values of the slurry increased as mix ratio decreased due to the increase in the amount of AW. The obtained results indicate that bio-energy production can be improved through co-digestion of SS using AW as a co-substrate;thus warranting further investigation for the practical application in the energy production. 展开更多
关键词 BIO-ENERGY Anaerobic co-digestion Abattoir Wastes Sewage Sludge
下载PDF
Anaerobic co-digestion of thermo-alkaline pretreated microalgae and sewage sludge: Methane potential and microbial community
13
作者 Jiaqi Fu Bing Yan +2 位作者 Shuanglin Gui Yinxuan Fu Song Xia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第5期133-142,共10页
To improve methane production from sewage sludge(SS),co-digestion of SS and microalgae(MA)was studied and the application of thermo-alkaline pretreatment to MA was evaluated.The results showed that thermo-alkaline pre... To improve methane production from sewage sludge(SS),co-digestion of SS and microalgae(MA)was studied and the application of thermo-alkaline pretreatment to MA was evaluated.The results showed that thermo-alkaline pretreatment at 90℃ for 120 min on MA was the optimum pretreatment condition.Furthermore,when the volatile solids(VS)ratio of SS and MA was 1:2,the methane yield reached maximum(368.94 mL/g VS).Fourier transform infrared(FT-IR)and thermogravimetric analysis confirmed the synergetic effects of thermoalkaline pretreated MA on its co-digestion with SS.The analyses of microbial community indicated that Methanobacterium and Methanosarcina were the dominant methanogens during the co-digestion process.However,the relative abundance of Methanosarcina in thermoalkaline pretreated groups was higher compared to unpretreated groups.The microbial community structure might be affected by thermo-alkaline pretreatment rather than by the MA dosage in the co-digestion. 展开更多
关键词 Anaerobic co-digestion Thermo-alkaline pretreatment MICROALGAE Sewage sludge Microbial community
原文传递
Co-digestion of food waste and hydrothermal liquid digestate:Promotion effect of self-generated hydrochars
14
作者 Mingshuai Shao Chao Zhang +4 位作者 Xue Wang Ning Wang Qindong Chen Guangyu Cui Qiyong Xu 《Environmental Science and Ecotechnology》 SCIE 2023年第3期77-87,共11页
Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co... Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co-digestion of food waste and HTT liquid fraction.The effect of HTT liquid recirculation on anaerobic co-digestion performance was investigated.This study focused on the self-generated hydrochars that remained in the HTT supernatant after centrifugation.The effect of the self-generated hydrochars on the methane(CH_(4))yield and microbial communities were discussed.After adding HTT liquids treated at 140 and 180C,the maximum CH4 production increased to 309.36 and 331.61 mL per g COD,respectively.The HTT liquid exhibited a pH buffering effect and kept a favorable pH for the anaerobic co-digestion.In addition,the self-generated hydrochars with higher carbon content and large oxygen-containing functional groups remained in HTT liquid.They increased the electron transferring rate of the anaerobic co-digestion.The increased relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota was observed with adding HTT liquid.The results of the principal component analysis indicate that the electron transferring rate constant had positive correlationships with the relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota.This study can provide a good reference for the disposal of the HTT liquid and a novel insight regarding the mechanism for the anaerobic co-digestion. 展开更多
关键词 Anaerobic co-digestate Electron transfer Food waste Hydrothermal treatment Microbial community Self-generated hydrochars
原文传递
Enhancement of biogas potential of primary sludge by co-digestion with cow manure and brewery sludge 被引量:4
15
作者 Irene Nansubuga Noble Banadda +3 位作者 Mohammed Babu Jo De Vrieze Willy Verstraete Korneel Rabaey 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第4期86-94,共9页
Anaerobic digestion(AD)has long been used to treat different types of organic wastes especially in the developed world.However,organic wastes are still more often considered as a waste instead of a resource in the dev... Anaerobic digestion(AD)has long been used to treat different types of organic wastes especially in the developed world.However,organic wastes are still more often considered as a waste instead of a resource in the developing world,which contributes to environmental pollution arising from their disposal.This study has been conducted at Bugolobi Sewage Treatment Plant(BSTP),where two organic wastes,cow manure and brewery sludge were co-digested with primary sludge in different proportions.This study was done in lab-scale reactors at mesophilic temperature and sludge retention time of 20 d.The main objective was to evaluate the biodegradability of primary sludge generated at BSTP,Kampala,Uganda and enhance its ability of biogas production.When the brewery sludge was added to primary STP sludge at all proportions,the biogas production rate increased by a factor of 3.This was significantly(p<0.001)higher than observed gas yield(337±18)mL/(L·d))in the control treatment containing(only STP sludge).Co-digesting STP sludge with cow manure did not show different results compared to the control treatment.In conclusion,Bugolobi STP sludge is poorly anaerobically degradable with low biogas production but co-digestion with brewery sludge enhanced the biogas production rate,while co-digestion with cow manure was not beneficial. 展开更多
关键词 wastewater treatment co-digestion cow manure BREWERY primary sludge BIOGAS energy recovery
原文传递
Anaerobic co-digestion of rice straw and digested swine manure with different total solid concentration for methane production 被引量:2
16
作者 Darwin Jay J.Cheng +2 位作者 Zhimin Liu Jorge Gontupil O-Seob Kwon 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第6期79-90,共12页
This study aimed to investigate potential methane production through anaerobic co-digestion of rice straw and digested swine manure with different total solids.The research was carried out in bench scale with utilizin... This study aimed to investigate potential methane production through anaerobic co-digestion of rice straw and digested swine manure with different total solids.The research was carried out in bench scale with utilizing batch system.To evaluate the stability of anaerobic co-digestion process,the experiment was run in triplicate.The anaerobic co-digestion process was operated in 500 mL batch digesters under constant agitation speed and temperature.The agitation speed was maintained at 270 r/min.Temperature of the batch system was set and maintained at 35℃.Digested swine manure utilized in this experiment was obtained from semi-continuous digesters run at steady state condition,with 25 days of hydraulic retention time under mesophilic condition.Rice straw(RS)generated the highest methane production at 3% total solids(TS)which was around(1814±47.43)mL,where in this concentration,it had C:N ratio at 10.6:1.Rice straw obtained the highest methane yield at 3% TS,which was around(141.4±3.70)mL CH_(4)/g volatile solids(VS)added.Rice straw also had the highest chemical oxygen demand(COD)removal and VS reduction at 3% TS which were around(52.97%±1.46%)and(61.81%±1.04%),respectively. 展开更多
关键词 anaerobic co-digestion rice straw digested swine manure methane production
原文传递
Anaerobic co-digestion of sodium hydroxide pretreated sugarcane leaves with pig manure and dairy manure 被引量:1
17
作者 Juan Luo Haibo Meng +4 位作者 Zonglu Yao Akiber Chufo Wachemo Hairong Yuan Liang Zhang Xiujin Li 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第4期224-229,共6页
Sugarcane leaves(SL)pretreated by alkali was used as substrate to enhance biogas production via mesophilic anaerobic digestion(AD)in this study.Effectiveness of different concentrations of NaOH pretreatment on AD perf... Sugarcane leaves(SL)pretreated by alkali was used as substrate to enhance biogas production via mesophilic anaerobic digestion(AD)in this study.Effectiveness of different concentrations of NaOH pretreatment on AD performance was investigated.Results showed that compared to untreated sample of SL,the lignocellulose(LCH)content of NaOH pretreated group was decreased by 5.79%-16.85%.However,the cumulative biogas production of the pretreated samples increased in the range of 34.54%-82.67%;moreover,T90 was shorten by 5-7 d.The highest anaerobic digestibility of SL was achieved at 6%NaOH pretreatment,which produced 287.30 mL/g TS of biogas.A significant interactive effect of the three parameters(temperature,SL/manure mixing ratio and C/N ratio)was found on the biogasification of anaerobic co-digestion,and a maximum biogas production was achieved at 36.2oC,mixing ratio of 1.6 and C/N ratio of 29.2.These show that the verification experiment confirmed the optimization results.This study provides meaningful insight for exploring efficient pretreatment strategy and optimal condition to stabilize and enhance AD performance for practical application. 展开更多
关键词 NaOH pretreatment co-digestion sugarcane leaves pig manure dairy manure
原文传递
Two-phase anaerobic co-digestion of dairy manure with swine manure 被引量:1
18
作者 Guan Zhengjun Sun Xianli +3 位作者 Bi Lanping Li Wenzhe Zhang Ying Wang Zhigang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第2期146-152,共7页
In order to solve the problems associated with high fiber content,and the ensuing lower biogas volume yield in anaerobic digestion of dairy manure,a study of the co-digestion of separated liquids from dairy manure com... In order to solve the problems associated with high fiber content,and the ensuing lower biogas volume yield in anaerobic digestion of dairy manure,a study of the co-digestion of separated liquids from dairy manure combined with swine manure using a two-phase anaerobic digestion process was conducted.The influence of level of total solids(TS)and hydraulic retention time(HRT)of the mixed liquor on the specific methane production were studied.Three TS levels 8%,10%and 12%were investigated.Analysis of the results show that a maximum specific methane yield of 132.99 L/kg volatile solids(VS),can be obtained with a TS of 9%,an inoculation rate of 30%,the duration of hydrolytic acidification phase of 5 d,and an HRT of the methanogenic phase of 10 d.These findings could provide directions for improving the biogas production by performing the co-digestion of dairy manure with swine manure. 展开更多
关键词 co-digestion two-phase anaerobic digestion dairy manure swine manure BIOGAS
原文传递
An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater 被引量:1
19
作者 B.Bernardi S.Benalia +2 位作者 D.A.Zema V.Tamburino G.Zimbalatti 《Information Processing in Agriculture》 EI 2017年第4期316-320,共5页
Olive oil production constitutes one of the most important agro-industrial business for Mediterranean countries,where 97% of the international production is focused.Such an activity,mainly carried out through three ph... Olive oil production constitutes one of the most important agro-industrial business for Mediterranean countries,where 97% of the international production is focused.Such an activity,mainly carried out through three phase olive oil mill plants,generates huge amounts of solid and liquid by-products further than olive oil.Physico-chemical features of these by-products depend on various factors such as soil and climatic conditions,agricultural practices and processing.As currently carried out,the disposal of these byproducts may lead to numerous problems taking into account management,economic and particularly environmental aspects.Indeed,olive mill wastewater is not easily biodegradable due to its high chemical and biochemical oxygen demand,its high content in phenolic compounds,high ratio C/N and low pH,leading consequently to soil and water source pollution.Considering,the above-mentioned statements,olive mill waste disposal constitutes nowadays a challenge for oil industry stakeholders.It becomes necessary to look for alternative solutions in order to overcome environmental problems and ensure the sustainability of oil industry.Anaerobic co-digestion of olive mill wastewater with other agro-industrial matrices could be one of these solutions;since it offers the possibility to produce green energy and break down toxicological compounds contained in these wastewater for a better disposal of the digested matrices as soil conditioner.In this contest,this note reports the functioning principle of an automated medium scale plant for anaerobic co-digestion of olive mill wastewater. 展开更多
关键词 Medium scale prototype Olive mill wastewater(OMWW) Anaerobic co-digestion(AcoD) Automatic process
原文传递
Effects of cow manure ratios on methane production and microbial community evolution in anaerobic co-digestion with different crop wastes
20
作者 Jianjun Hao Shufei Jia +7 位作者 Hao Sun Gaopan Chen Jiaxing Zhang Yubin Zhao Yang Song Jianguo Zhao Yaya Wang Shuang Liu 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第5期219-228,共10页
The present study investigated the effects of cow manure ratios mixed with maize stover,rice straw,and wheat stalk at 3,2,1(total solid based,TS-based),respectively,on methane production and microbial community struct... The present study investigated the effects of cow manure ratios mixed with maize stover,rice straw,and wheat stalk at 3,2,1(total solid based,TS-based),respectively,on methane production and microbial community structure during the anaerobic co-digestion process.Results showed cow manure co-digested with maize stover,wheat stalk,and rice straw at ratios of 2,1,and 3 had the highest cumulative methane yields(272.99,153.22167.73 mL/g volatile solid(VS),respectively)and better stability(e.g.pH,volatile fatty acids(VFAs)and their component).The main microbe evolution had a similar trend which was Petrimonas and Methanosaeta in the early digestion process(Days 0-7)and then evolved into Longilinea,Ruminofilibacter,and Methanosarcina with the progress of digestion,but the relative abundance of these microbes in each reactor was different.It was worth noting that Caldicoprobacter in cow manure to maize stover ratio of 2,and to rice straw ratio of three reactors had a relatively higher proportion than reactor of cow manure to wheat stalk ratio of 1,and Hydrogenophaga was the specific bacterium in cow manure to wheat stalk ratio of 1 reactor.In addition,Petrimonas showed positive relationship with VFAs and Longilinea was the opposite.Methanosaeta and Methanobacterium contributed the most during the peak period of methane production in cow manure and maize stover co-digested reactor,and showed positive relationship with acetic acid.However,Methanosarcina and Methanospirillum made a great contribution during the peak period of methane production in cow manure co-digested with wheat stalk and rice straw reactors.These findings could provide further information on the application of cow manure co-digested with crop wastes. 展开更多
关键词 cow manure ratio methane production microbial community evolution crop wastes anaerobic co-digestion
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部