It is important to develop the advanced coal to chemicals industry(ACCI)against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental constraints in China.In this s...It is important to develop the advanced coal to chemicals industry(ACCI)against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental constraints in China.In this study,the technology and industry of China’s ACCI are reviewed to explain the effect of using coal to replace oil and natural gas,and the corresponding resource and environmental burdens that this will create.Development trends in technology and industry are also proposed to explore future scenarios.The review shows that although excellent progress has been made on an industrial scale,demonstrative level,and in terms of technology and equipment,the lack of strategic understanding,severe external constraints,partly underdeveloped technologies,and weak foundations must be immediately addressed.Therefore,it is necessary to clarify the importance that the ACCI has on the energy revolution and energy system.Based on technological innovation,a variety of external factors should be considered as a whole with emphasis on filling the knowledge gap of theoretical foundations and industry standards to support high-quality development for ACCI.展开更多
Coal Washing Exploration in India dates back to 1900s; though, first coking coal washeries in India were installed after independence. At present, most of the coking coal washeries are owned by Public Sector Companies...Coal Washing Exploration in India dates back to 1900s; though, first coking coal washeries in India were installed after independence. At present, most of the coking coal washeries are owned by Public Sector Companies; whereas, most of the non-coking coal washeries are owned by Private Sector. Even after six decades of coal washing practices, there has not been significant development in the coal washing intelligentsia. Indian Coal Washing industry is still dependent on imported equipment, which has been designed to treat coal that is significantly different from Indian coal of drift origin. In this paper, authors have ventured into evolution of Indian Coal Washing Industry (with a focus on coking coal washing sector), its present condition and future prospect for growth. The paper emphasizes need for developing indigenous solutions to industrial challenges and highlights importance of increased coordination among academia-research institutions and coal industry.展开更多
A reporter for China’s Foreign Tradehas learned from the Ministry of theCoal Industry that China will takethe following steps to develop its coal industryduring the ninth five-Year plan period. 1. To regulate the pol...A reporter for China’s Foreign Tradehas learned from the Ministry of theCoal Industry that China will takethe following steps to develop its coal industryduring the ninth five-Year plan period. 1. To regulate the policy for buildupthe coal industry and to make a good job ofthe comprehensive development of buildinga number of key coal production bases.展开更多
Coal is China’s principal source of energy,accounting for about 75percent of primary energy.This pattern will remain unchanged fora long period of time from now on.Thanks to the efforts made duringthe Eighth Five-Yea...Coal is China’s principal source of energy,accounting for about 75percent of primary energy.This pattern will remain unchanged fora long period of time from now on.Thanks to the efforts made duringthe Eighth Five-Year Plan period,the general situation for the coalindustry is now good.展开更多
In recent years, facing the unprecedented difficulties andchallenges such as fuel price increase, supply tension of powercoal and increasing pressure of environmental protection, thesurvival of power enterprises is su...In recent years, facing the unprecedented difficulties andchallenges such as fuel price increase, supply tension of powercoal and increasing pressure of environmental protection, thesurvival of power enterprises is subjected to certain squeeze.Theimpactofcoalindustryonthepowerindustryisincreasing.Since the foundation of the new China, coal is prominentin China's primary energy production and consumption. Inrecent years, with the continuing rise of the international oilprice, coal becomes more important i...展开更多
Coal is China’s principal source ofenergy, accounting for about 75percent of primary energy. This patternwill remain unchanged for a long period oftime from now on. Thanks to the effortsmade during the Eighth Five-Ye...Coal is China’s principal source ofenergy, accounting for about 75percent of primary energy. This patternwill remain unchanged for a long period oftime from now on. Thanks to the effortsmade during the Eighth Five-Year Plan period,the general situation for the coal industry isnow good.展开更多
At the beginning of 2008, the Central, East and South China suffered a rare snow and ice disaster. After the disaster, power generation and power grid enterprises faced a big problem of power coal supply.
This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed i...This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed in the 2010s and 2020s in Fujian Province. In order to meet the requirements of high efficiency and envirofimental protection, the usage of clean coal technologies for power generating will be an inevitable option and the technologies will occupy the important position in Fujian power industry. This paper puts forward the staged targets and measures of developing and utilizing clean coal technologies, suggests that all government depotments related should give support and guarantee in policies and conditions, and welcome technical and economic cooperation at home and abroad, which is good for co-development of both parties.展开更多
The degradation rate of phenol-degrading biofilm was studied.The biofilm of the biofilm was a kind of phenol-degrading bacteria.The bacteria was separated from coal chemical industry wastewater.The carbon source adopt...The degradation rate of phenol-degrading biofilm was studied.The biofilm of the biofilm was a kind of phenol-degrading bacteria.The bacteria was separated from coal chemical industry wastewater.The carbon source adopted four kinds of phenols,including phenol,methyl phenol,2-methyl phenol and resorcinol.Stenotrophomonas maltophilia K279a was gained.Twelve ratio of artificial phenol mixture was designed.The degradation rate of the twelve groups was all 99.9% in 16 h.The degradation rate from high to low was phenol,resorcinol,methyl phenol,2-methyl phenol.Phenol improved the degradation of the other phenols.The coal chemical wastewater contained 980 mg/L COD and 805 mg/L phenol.The degradation rate of COD and phenol was 70% and 77%,respectively.The domesticated biofilm (D) and the biofilm without domestication (WD) respectively used 45 h and 56 h.The results showed that the biofilm can be applied to the aerobic treatment process with high proportion of total phenol.展开更多
Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect ...Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.展开更多
Three-dimensional (3D) excitation-emission matrix (EEM) fluorescence spectroscopy is applied to characterize the coal oil. The results show that the 3D fluorescence spectra of coal oil in aqueous solution mainly h...Three-dimensional (3D) excitation-emission matrix (EEM) fluorescence spectroscopy is applied to characterize the coal oil. The results show that the 3D fluorescence spectra of coal oil in aqueous solution mainly have one broad peak. This peak is identified at the excitation/emission wavelengths of 270/290 nm. The relation between the fluorescence intensity and the concentration of coal oil is also studied. When the concentration lies between 2 - 2000 ppm, the relation between the fluorescence intensity and the concentration of coal oil is well linear. The nature of solvents significantly affects the EEM fluorescence of coal oil.展开更多
Coal-based olefin(CTO)industry as a complement of traditional petrochemical industry plays vital role in China’s national economic development.However,high CO2 emission in CTO industry is one of the fatal problems to...Coal-based olefin(CTO)industry as a complement of traditional petrochemical industry plays vital role in China’s national economic development.However,high CO2 emission in CTO industry is one of the fatal problems to hinder its development.In this work,the carbon emission and mitigation potentials by different reduction pathways are evaluated.The economic cost is analyzed and compared as well.According to the industry development plan,the carbon emissions from China’s CTO industry will attain 189.43 million ton C02(MtC02)and 314.11 MtC02 in 2020 and 2030,respectively.With the advanced technology level,the maximal carbon mitigation potential could be attained to 15.3%and 21.9%in 2020 and 2030.If the other optional mitigation ways are combined together,the carbon emission could further reduce to some extent.In general,the order of mitigation potential is followed as:feedstock alteration by natural gas>C02 hydrogenation with renewable electricity applied>CCS technology.The mitigation cost analysis indicates that on the basis of 2015 situation,the economic penalty for feedstock alteration is the lowest,ranged between 186 and 451 CNY/tCO2,and the cost from CCS technology is ranged between 404 and 562 CNY/tC02,which is acceptable if the C02 enhanced oil recovery and carbon tax are considered.However,for the C02 hydrogenation technology,the cost is extremely high and there is almost no application possibility at present.展开更多
Reverse osmosis(RO)is frequently used for water reclamation from treated wastewater or desalination plants.The RO concentrate(ROC)produced from the coal chemical industry(CCI)generally contains refractory organic poll...Reverse osmosis(RO)is frequently used for water reclamation from treated wastewater or desalination plants.The RO concentrate(ROC)produced from the coal chemical industry(CCI)generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions,such as Na^(+),Ca^(2+),Mg^(2+),Cl^(−),and SO_(4)^(2−).To address this issue,in this study,we focused on coupling forward osmosis(FO)with chemical softening(FO-CS)for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO_(3).In the case of the real raw CCI ROC,softening treatment by lime-soda ash was shown to effectively remove Ca^(2+)/Ba^(2+)(>98.5%)and Mg^(2+)/Sr^(2+)/Si(>80%),as well as significantly mitigate membrane scaling during FO.The softened ROC and raw ROC corresponded to a maximum water recovery of 86%and 54%,respectively.During cyclic FO tests(4×10 h),a 27%decline in the water flux was observed for raw ROC,whereas only 4%was observed for softened ROC.The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC(88.5%)than that for raw ROC(49.0%).In addition,CaCO3(92.2%purity)was recovered from the softening sludge with an average yield of 5.6 kg/m^(3) treated ROC.This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery,which makes the treatment of CCI ROC more efficient and more economical.展开更多
In a gas/particle two-phase test facility, a three-component particle-dynamics anemometer was used to measure the characteristics of gas/particle two-phase flows in a 29 megawatt (MW) pulverized coal industrial boiler...In a gas/particle two-phase test facility, a three-component particle-dynamics anemometer was used to measure the characteristics of gas/particle two-phase flows in a 29 megawatt (MW) pulverized coal industrial boiler equipped with a new type of swirling pulverized coal burner. The distributions of three-dimensional gas/particle velocity, particle volume flux, and particle size distribution were measured under different working conditions. The mean axial velocity and the particle volume flux in the central region of the burner outlet were found to be negative. This indicated that a central recirculation zone was formed in the center of the burner. In the central recirculation zone, the absolute value of the mean axial velocity and the particle volume flux increased when the external secondary air volume increased. The size of the central reflux zone remained stable when the air volume ratio changed. Along the direction of the jet, the peak value formed by the tertiary air gradually moved toward the center of the burner. This tertiary air was mixed with the peak value formed by the air in the adiabatic combustion chamber after the cross-section of x/d = 0.7. Large particles were concentrated near the wall area, and the particle size in the recirculation zone was small.展开更多
As the coal-dominated energy structure will remain unchanged in the short term, the sustainable development of the coal industry is still serving as one of the foundations for the sound development of the national eco...As the coal-dominated energy structure will remain unchanged in the short term, the sustainable development of the coal industry is still serving as one of the foundations for the sound development of the national economy. The construction of modernized mines based on 'four orientations', that is, orientations of scale production, modern technology and equipment, informationized management and professional working team, has been rapidly enhancing its development in the recent decade. However, in the next decade or an even longer period, the industry, with the energy centre shifting to the West of China, will be exposed to new options and development in the layout, structure, model, technology, etc.展开更多
基金supported by the Foundation of the Chinese Academy of Engineering,China(CKCEST-2021-1-15 and 2020NXZD3)。
文摘It is important to develop the advanced coal to chemicals industry(ACCI)against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental constraints in China.In this study,the technology and industry of China’s ACCI are reviewed to explain the effect of using coal to replace oil and natural gas,and the corresponding resource and environmental burdens that this will create.Development trends in technology and industry are also proposed to explore future scenarios.The review shows that although excellent progress has been made on an industrial scale,demonstrative level,and in terms of technology and equipment,the lack of strategic understanding,severe external constraints,partly underdeveloped technologies,and weak foundations must be immediately addressed.Therefore,it is necessary to clarify the importance that the ACCI has on the energy revolution and energy system.Based on technological innovation,a variety of external factors should be considered as a whole with emphasis on filling the knowledge gap of theoretical foundations and industry standards to support high-quality development for ACCI.
文摘Coal Washing Exploration in India dates back to 1900s; though, first coking coal washeries in India were installed after independence. At present, most of the coking coal washeries are owned by Public Sector Companies; whereas, most of the non-coking coal washeries are owned by Private Sector. Even after six decades of coal washing practices, there has not been significant development in the coal washing intelligentsia. Indian Coal Washing industry is still dependent on imported equipment, which has been designed to treat coal that is significantly different from Indian coal of drift origin. In this paper, authors have ventured into evolution of Indian Coal Washing Industry (with a focus on coking coal washing sector), its present condition and future prospect for growth. The paper emphasizes need for developing indigenous solutions to industrial challenges and highlights importance of increased coordination among academia-research institutions and coal industry.
文摘A reporter for China’s Foreign Tradehas learned from the Ministry of theCoal Industry that China will takethe following steps to develop its coal industryduring the ninth five-Year plan period. 1. To regulate the policy for buildupthe coal industry and to make a good job ofthe comprehensive development of buildinga number of key coal production bases.
文摘Coal is China’s principal source of energy,accounting for about 75percent of primary energy.This pattern will remain unchanged fora long period of time from now on.Thanks to the efforts made duringthe Eighth Five-Year Plan period,the general situation for the coalindustry is now good.
文摘In recent years, facing the unprecedented difficulties andchallenges such as fuel price increase, supply tension of powercoal and increasing pressure of environmental protection, thesurvival of power enterprises is subjected to certain squeeze.Theimpactofcoalindustryonthepowerindustryisincreasing.Since the foundation of the new China, coal is prominentin China's primary energy production and consumption. Inrecent years, with the continuing rise of the international oilprice, coal becomes more important i...
文摘Coal is China’s principal source ofenergy, accounting for about 75percent of primary energy. This patternwill remain unchanged for a long period oftime from now on. Thanks to the effortsmade during the Eighth Five-Year Plan period,the general situation for the coal industry isnow good.
文摘At the beginning of 2008, the Central, East and South China suffered a rare snow and ice disaster. After the disaster, power generation and power grid enterprises faced a big problem of power coal supply.
文摘This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed in the 2010s and 2020s in Fujian Province. In order to meet the requirements of high efficiency and envirofimental protection, the usage of clean coal technologies for power generating will be an inevitable option and the technologies will occupy the important position in Fujian power industry. This paper puts forward the staged targets and measures of developing and utilizing clean coal technologies, suggests that all government depotments related should give support and guarantee in policies and conditions, and welcome technical and economic cooperation at home and abroad, which is good for co-development of both parties.
基金Sponsored by the National High Technology Research Development Plan of China (Grant No.2007AA06A411)
文摘The degradation rate of phenol-degrading biofilm was studied.The biofilm of the biofilm was a kind of phenol-degrading bacteria.The bacteria was separated from coal chemical industry wastewater.The carbon source adopted four kinds of phenols,including phenol,methyl phenol,2-methyl phenol and resorcinol.Stenotrophomonas maltophilia K279a was gained.Twelve ratio of artificial phenol mixture was designed.The degradation rate of the twelve groups was all 99.9% in 16 h.The degradation rate from high to low was phenol,resorcinol,methyl phenol,2-methyl phenol.Phenol improved the degradation of the other phenols.The coal chemical wastewater contained 980 mg/L COD and 805 mg/L phenol.The degradation rate of COD and phenol was 70% and 77%,respectively.The domesticated biofilm (D) and the biofilm without domestication (WD) respectively used 45 h and 56 h.The results showed that the biofilm can be applied to the aerobic treatment process with high proportion of total phenol.
基金supported by the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2013DX10)the National Water Special Funds of China(No.2008ZX07207)
文摘Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.
基金supported by the National"863"Program of China under Grant No.2007AA061502
文摘Three-dimensional (3D) excitation-emission matrix (EEM) fluorescence spectroscopy is applied to characterize the coal oil. The results show that the 3D fluorescence spectra of coal oil in aqueous solution mainly have one broad peak. This peak is identified at the excitation/emission wavelengths of 270/290 nm. The relation between the fluorescence intensity and the concentration of coal oil is also studied. When the concentration lies between 2 - 2000 ppm, the relation between the fluorescence intensity and the concentration of coal oil is well linear. The nature of solvents significantly affects the EEM fluorescence of coal oil.
基金sponsored by the National Key Research and Development Program(No.2016YFA0602603,No.2016YFA0602602)Chinese Academy of Sciences Youth Innovation Promotion Association FundingShanghai Natural Science Foundation(No.18ZR1444200)
文摘Coal-based olefin(CTO)industry as a complement of traditional petrochemical industry plays vital role in China’s national economic development.However,high CO2 emission in CTO industry is one of the fatal problems to hinder its development.In this work,the carbon emission and mitigation potentials by different reduction pathways are evaluated.The economic cost is analyzed and compared as well.According to the industry development plan,the carbon emissions from China’s CTO industry will attain 189.43 million ton C02(MtC02)and 314.11 MtC02 in 2020 and 2030,respectively.With the advanced technology level,the maximal carbon mitigation potential could be attained to 15.3%and 21.9%in 2020 and 2030.If the other optional mitigation ways are combined together,the carbon emission could further reduce to some extent.In general,the order of mitigation potential is followed as:feedstock alteration by natural gas>C02 hydrogenation with renewable electricity applied>CCS technology.The mitigation cost analysis indicates that on the basis of 2015 situation,the economic penalty for feedstock alteration is the lowest,ranged between 186 and 451 CNY/tCO2,and the cost from CCS technology is ranged between 404 and 562 CNY/tC02,which is acceptable if the C02 enhanced oil recovery and carbon tax are considered.However,for the C02 hydrogenation technology,the cost is extremely high and there is almost no application possibility at present.
基金This work was supported by the National Kry Technology R&D Program(No.2019YFC0408503)State Key Laboratory of Urban Water Resource and Environment(No.20180X09).
文摘Reverse osmosis(RO)is frequently used for water reclamation from treated wastewater or desalination plants.The RO concentrate(ROC)produced from the coal chemical industry(CCI)generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions,such as Na^(+),Ca^(2+),Mg^(2+),Cl^(−),and SO_(4)^(2−).To address this issue,in this study,we focused on coupling forward osmosis(FO)with chemical softening(FO-CS)for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO_(3).In the case of the real raw CCI ROC,softening treatment by lime-soda ash was shown to effectively remove Ca^(2+)/Ba^(2+)(>98.5%)and Mg^(2+)/Sr^(2+)/Si(>80%),as well as significantly mitigate membrane scaling during FO.The softened ROC and raw ROC corresponded to a maximum water recovery of 86%and 54%,respectively.During cyclic FO tests(4×10 h),a 27%decline in the water flux was observed for raw ROC,whereas only 4%was observed for softened ROC.The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC(88.5%)than that for raw ROC(49.0%).In addition,CaCO3(92.2%purity)was recovered from the softening sludge with an average yield of 5.6 kg/m^(3) treated ROC.This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery,which makes the treatment of CCI ROC more efficient and more economical.
基金This work was supported by National Key Research and Development Program of China(Grant No.2017YF C0212500).
文摘In a gas/particle two-phase test facility, a three-component particle-dynamics anemometer was used to measure the characteristics of gas/particle two-phase flows in a 29 megawatt (MW) pulverized coal industrial boiler equipped with a new type of swirling pulverized coal burner. The distributions of three-dimensional gas/particle velocity, particle volume flux, and particle size distribution were measured under different working conditions. The mean axial velocity and the particle volume flux in the central region of the burner outlet were found to be negative. This indicated that a central recirculation zone was formed in the center of the burner. In the central recirculation zone, the absolute value of the mean axial velocity and the particle volume flux increased when the external secondary air volume increased. The size of the central reflux zone remained stable when the air volume ratio changed. Along the direction of the jet, the peak value formed by the tertiary air gradually moved toward the center of the burner. This tertiary air was mixed with the peak value formed by the air in the adiabatic combustion chamber after the cross-section of x/d = 0.7. Large particles were concentrated near the wall area, and the particle size in the recirculation zone was small.
文摘As the coal-dominated energy structure will remain unchanged in the short term, the sustainable development of the coal industry is still serving as one of the foundations for the sound development of the national economy. The construction of modernized mines based on 'four orientations', that is, orientations of scale production, modern technology and equipment, informationized management and professional working team, has been rapidly enhancing its development in the recent decade. However, in the next decade or an even longer period, the industry, with the energy centre shifting to the West of China, will be exposed to new options and development in the layout, structure, model, technology, etc.