期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Evaluation of roof cutting by directionally single cracking technique in automatic roadway formation for thick coal seam mining
1
作者 Yubing Gao Qiukai Gai +2 位作者 Xingxing Zhang Xun Xi Manchao He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期137-157,共21页
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ... Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting. 展开更多
关键词 No pillar mining Automatic roadway formation Directionally single cracking Roof cutting roadway stability-Thick coal seam mining
下载PDF
Analysis on advanced transient EM detectability of coal mine roadway
2
作者 LING Hong LIU Yunhe MA Xinpeng 《Global Geology》 2023年第3期177-188,共12页
The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to ... The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents. 展开更多
关键词 coal mine roadway transient EM time-domain finite-element advanced detection
下载PDF
Quantitative analysis of parameters’influence on the stability of coal roadway clamped by upper and lower soft rock with extra thickness
3
作者 Zenghui Zhao Weiming Wang Jixing Yan 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2014年第2期25-39,共15页
In this paper,a physical model of coal roadway which is clamped by upper and lower softrock with extra thickness was built according to the characteristics of soft rock strata in china's western mining area.Then,a... In this paper,a physical model of coal roadway which is clamped by upper and lower softrock with extra thickness was built according to the characteristics of soft rock strata in china's western mining area.Then,a series of orthogonal numerical experiments were carried out by selecting the strength and stiffness parameters of soft rock and coal seam as well as the in situ stress of soft rock strata as experimental factors and roadway displacements(convergence displacements of sides,displacement of roof to floor)as experimental indexes.By constructing the F statistics with different inspection levels,evaluation method for influence of the experimental factors on stability indexes were defined.Thus,influence degrees of specified parameters on the stability of roadway were divided into five classes as follows:highly significant influence,significant influence,relatively significant influence,little significant influence,and no influence respectively which realize the quantitative analysis of the influence degrees of experimental factors.The finite element calculation results showed that main failure mode of coal roadway that usually showed as tension failure of coal seam in roof and deformation factors of coal seam had the most remarkable effect on roadway displacements.The conclusions provide theoretical basis for further analysis of the mechanism of"roof burst"in roadway maintenance. 展开更多
关键词 Upper and lower soft rock with extra thickness coal roadway orthogonal experiment stability influence degree quantitative analysis
原文传递
Digital image processing-based automatic detection algorithm of cross joint trace and its application in mining roadway excavation practice 被引量:1
4
作者 Yuxin Yuan Nong Zhang +3 位作者 Changliang Han Sen Yang Zhengzheng Xie Jin Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1219-1231,共13页
This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for n... This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively. 展开更多
关键词 coal roadway Cross joint Image detection Stand-up time evaluation
下载PDF
Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt(RCB)composite system 被引量:7
5
作者 Genshui Wu Weijian Yu +1 位作者 Jianping Zuo Shaohua Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期759-768,共10页
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur... For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early. 展开更多
关键词 Thin coal seam coal and rock roadway BOLT Tension-shear failure “Rock-coal-bolt”composite system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部