期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Current status and technical challenges of C_(2)storage in coal seams and enhanced coalbed methane recovery:an overview 被引量:22
1
作者 Xiaochun Li Zhi-ming Fang 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期93-102,共10页
In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emissio... In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emission reduction and coalbed methane recovery enhancement.This paper presents an overview on the current status of research on C_(2)-ECBM in the past two decades,which involves C_(2)storage capacity evaluations,laboratory investigations,modelings and pilot tests.The current status shows that we have made great progress in the ECBM technology study,especially in the understanding of the ECBM mechanisms.However,there still have many technical challenges,such as the definition of unmineable coal seams for C_(2)storage capacity evaluation and storage site characterization,methods for C_(2)injectivity enhancement,etc.The low injectivity of coal seams and injectivity loss with C_(2)injection are the major technique challenges of ECBM.We also search several ways to promote the advancement of ECBM technology in the present stage,such as integrating ECBM with hydraulic fracturing,using a gas mixture instead of pure C_(2)for injection into coal seams and the application of ECBM to underground coal mines. 展开更多
关键词 C_(2)storage in coal seams ECBM PERMEABILITY Hydraulic fracture Gas mixture
下载PDF
CO_2 –H_2O–coal interaction of CO_2 storage in coal beds 被引量:2
2
作者 Gao Shasha Wang Yanbin +3 位作者 Jia Lilong Wang Hongjie Yuan Jun Wang Xianghao 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期519-523,共5页
In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability an... In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD). 展开更多
关键词 CO2 storage coal bed Mineral reaction Permeability Porosity
下载PDF
Assessment of CO_(2)geological storage capacity based on adsorption isothermal experiments at various temperatures:A case study of No.3 coal in the Qinshui Basin
3
作者 Sijie Han Shuxun Sang +2 位作者 Jinchao Zhang Wenxin Xiang Ang Xu 《Petroleum》 EI CSCD 2023年第2期274-284,共11页
Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CC... Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CCUS.Here,the No.3 anthracite in the Qinshui Basin was studied using the superposition of each CO_(2)geological storage category to construct models for theoretical CO_(2)geological storage capacity(TCGSC)assessment,and CO_(2)adsorption capacity variation with depth.CO_(2)geological storage potential of No.3 anthracite coal was assessed by integrating the adsorption capacity with the static storage and dissolution capacities.The results show that(1)CO_(2)adsorption capacities of XJ and SH coals initially increased with depth,peaked at 47.7 cm3/g and 41.5 cm3/g around 1000 m,and later decreased with depth.(2)four assessment areas and their geological model parameters were established based on CO_(2)phase variation and spatial distribution of coal thickness,(3)the abundance of CO_(2)geological storage capacity(ACGSC),which averages 40 cm3/g,shows an analogous circularity-sharp distribution,with the high abundance area influenced by depth and coal rank,and(4)the TCGSC and the effective CO_(2)geological storage capacity(ECGSC)are 9.72 Gt and 6.54 Gt;the gas subcritical area accounted for 76.41%of the total TCGSC.Although adsorption-related storage capacity accounted for more than 90%of total TCGSC,its proportion,however,decreased with depth.Future CO_(2)-ECBM project should focus on highrank coals in gas subcritical and gas-like supercritical areas.Such research will provide significant reference for assessment of CO_(2)geological storage capacity in deep coals. 展开更多
关键词 CO_(2)geological storage in coal Theoretical geological storage capacity The abundance of CO_(2)geological storage capacity ANTHRACITE Qinshui basin
原文传递
Investigation of natural ventilation performance of large space circular coal storage dome 被引量:4
4
作者 Yaohua Hou Chao Chen +2 位作者 Yu Zhou Zhixiang Yang Shen Wei 《Building Simulation》 SCIE EI CSCD 2021年第4期1077-1093,共17页
Large space circular coal storage dome(LSCCSD)offers an environmental and dependable alternative to open stockpiles,and it has been consequently widely applied in China.However,due to the lack of scientific guidelines... Large space circular coal storage dome(LSCCSD)offers an environmental and dependable alternative to open stockpiles,and it has been consequently widely applied in China.However,due to the lack of scientific guidelines,its natural ventilation performance is lower than expected.Natural ventilation potential strongly depends on the roof geometry and opening mode,which have not yet been investigated for LSCCSD.This paper presents a detailed evaluation of the impact of dome geometry(rise span ratio),opening height,and opening modes on the ventilation performance of LSCCSD.The evaluation is based on computational fluid dynamics(CFD)methods and is validated by available wind tunnel testing.We employed three evaluation indicators,which are wind pressure coefficient,effective ventilation rate,and wind speed ratio.The results demonstrate that the rise span ratio has a significant effect on the wind pressure difference and the effective ventilation rate increases by approximately 9%–42%with a single-annular opening.When double-annular openings are set in a strong positive pressure zone,the effective ventilation rate increases by 100%and the average wind speed ratio increases by 50%.When it is compared with single one with similar opening height,the effective ventilation rate increases by 25%.The optimum natural ventilation performance for LSCCSD is achieved at a rise span ratio of 0.37.In addition,the lateral middle opening is kept higher than the ridge top of the coal pile.The proposed evaluation approach and design parameters provided instructive information in the building design and ventilation control for LSCCSDs. 展开更多
关键词 large space circular coal storage dome natural ventilation performance opening mode computational fluid dynamics evaluation indicator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部