期刊文献+
共找到4,661篇文章
< 1 2 234 >
每页显示 20 50 100
Effect of carbon on microstructure of CrAlC_xN_(1-x) coatings by hybrid coating system 被引量:2
1
作者 Sung-Kyu AHN Se-Hun KWON Kwang-Ho KIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期78-82,共5页
A systematic investigation of the microstructure of CrA1CxN1-x coatings as a function of carbon contents was conducted. Quaternary CrA1CxN1-x coatings were deposited on Si wafers by a hybrid coating system combining a... A systematic investigation of the microstructure of CrA1CxN1-x coatings as a function of carbon contents was conducted. Quaternary CrA1CxN1-x coatings were deposited on Si wafers by a hybrid coating system combining an arc-ion plating technique and a DC reactive magnetron sputtering technique using Cr and AI targets in the Ar/N2/CH4 gaseous mixture. The effect of carbon content on microstructure of CrA1C^N~ x coatings was investigated with instrumental analyses of X-ray diffraction, X-ray photoelectron, and high-resolution transmission electron microscopy. The results show that the carbon content of CrA1CxN1-x coatings linearly increases with increasing CH4/(CH4/N2) gas flow rate ratio. The surface roughness of the CrA1CxN1-x coating layer decreases with the increase of carbon content. 展开更多
关键词 CrA1C N1-x coating NANOCOMPOSITE MICROSTRUCTURE hybrid coating system
下载PDF
Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment
2
作者 赵霞 陈长伟 +3 位作者 徐玮辰 朱庆军 戈成岳 侯保荣 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第5期1094-1107,共14页
Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel ... Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed tmiformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process. 展开更多
关键词 scratched coating system CORROSION carbon steel LONG-TERM SELF-HEALING
原文传递
Improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as third layer 被引量:6
3
作者 Mohammadreza DAROONPARVAR Muhamad Azizi Mat YAJID +5 位作者 Noordin Mohd YUSOF Saeed FAR AHANY Mohammad Sakhawat HUSSAIN Hamid Reza BAKHSHESHIRAD Z.VALEFI Ahmad ABDOLAHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1322-1333,共12页
A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. ... A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated. These coatings were oxidized at 1000 °C for 24, 48 and 120 h in a normal electric furnace under air atmosphere. Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings. Moreover, EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer. The formation of detrimental mixed oxides (spinels) on the Al2O3 (TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 °C. 展开更多
关键词 high temperature oxidation nano thermal barrier coatings TGO layer SPINELS
下载PDF
Investigation on behavior of crack penetration/deflection at interfaces in intelligent coating system 被引量:3
4
作者 Yang SUN Wenjuan WANG +1 位作者 Binbin LI Mabao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第4期465-474,共10页
Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of th... Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch al between the substrate and the driving layer. It also strongly depends on the elastic mismatch a2 between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on a2 gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating. 展开更多
关键词 intelligent coating energy criterion INTERFACE crack deflection crackpenetration finite element method
下载PDF
Oxidation and Hot Corrosion Behavior of a Composite Coating System 被引量:1
5
作者 Dongbai XIE and Fuhui WANGState Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期567-570,共4页
The oxidation and hot corrosion behavior of Co-Ni-Cr-AI-Ta-Y coating produced by magnetron sputtering with and without enamel coating has been investigated in air at 900℃ and in molten 75 wt pct NaCl+25 wt pct Na2SO4... The oxidation and hot corrosion behavior of Co-Ni-Cr-AI-Ta-Y coating produced by magnetron sputtering with and without enamel coating has been investigated in air at 900℃ and in molten 75 wt pct NaCl+25 wt pct Na2SO4 at 850℃. The results show that the enamel coating possesses good hot corrosion resistance in the molten salts, in comparison with the sputtered Co-Ni-Cr-AI-Ta-Y coating. In the hot corrosion test, breakaway corrosion did not occur on the samples with enamel coating and the composition of enamel coating did not significantly change either. The oxidation resistance of the sputtered coating, which offers good adhesion, can be improved by the enamel coating. 展开更多
关键词 Enamel coating Sputtered coating Hot corrosion Isothermal oxidation
下载PDF
Thermal properties of glass-ceramic bonded thermal barrier coating system 被引量:1
6
作者 S.GHOSH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期457-464,共8页
The thermal properties of a thermal barrier coating (TBC) system comprised of BaO-MgO-SiO_2 based glass-ceramic bond coating, 8% (mass fraction) yttria stabilized zirconia (8YSZ) top coating and nimonic alloy su... The thermal properties of a thermal barrier coating (TBC) system comprised of BaO-MgO-SiO_2 based glass-ceramic bond coating, 8% (mass fraction) yttria stabilized zirconia (8YSZ) top coating and nimonic alloy substrate were evaluated. The thermal diffusivity and thermal conductivity of the TBC coated substrate were lower than those of bare substrate and glass-ceramic coated substrate under identical conditions. The specific heat capacity, thermal diffusivity and thermal conductivity of the TBC coated substrate increase with the increase of the temperature. Further, it is observed that the thermal conductivity of the TBC system decreases with the increase in the top coating thickness. 展开更多
关键词 vglass-ceramic coating thermal barrier coating thermal properties yttria stabilized zirconia
下载PDF
Weakening effect of plastic yielding inception in thin hard coating systems 被引量:1
7
作者 Xiao Huang Shujun Zhou Tianmin Shao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期493-501,共9页
Hard coatings have been widely applied to enhance tribological performance of mechanical components.However,it was predicted that thin hard coatings may have a weakening effect which could reduce the coating/substrate... Hard coatings have been widely applied to enhance tribological performance of mechanical components.However,it was predicted that thin hard coatings may have a weakening effect which could reduce the coating/substrate system’s resistance to plastic yielding compared with the uncoated substrate material.In this paper,analytical simulation is utilized to investigate the origin of weakening effect.The functions of material mechanical properties and coating thickness on the weakening effect are theoretically investigated.Partial-unloading spherical nanoindentation tests are performed on tungsten coated single crystalline silicon and copper to acquire the stress-strain curves and compared with the uncoated cases.The experimental results are in consistence with the analytical solutions,demonstrating the presence of weakening effect. 展开更多
关键词 plastic yielding weakening effect spherical nanoindentation PVD coating
原文传递
Rheological Behaviour, Synthesis and Performance of Smart Thermal Barrier Coating Systems Based on Hollow Alumina 被引量:1
8
作者 F. Pedraza B. Rannou +2 位作者 G. Boissonnet B. Bouchaud Z. Maache-Rezzoug 《Journal of Materials Science and Chemical Engineering》 2015年第12期17-22,共6页
The stability of three water-based slurries containing different loads of Al microparticles was measured by laser scattering. The slurries displayed a Newtonian behaviour and the evolution of viscosity over nine days ... The stability of three water-based slurries containing different loads of Al microparticles was measured by laser scattering. The slurries displayed a Newtonian behaviour and the evolution of viscosity over nine days was found to be constant. Ground surfaces of nickel were also wetted similarly irrespective of the Al content in the slurries (30, 40 or 50 wt%) thereby demonstrating that the 1/10 PVA/H2O water based slurries are adequate for spraying. After deposition and annealing of the as-sprayed coatings, a thermal barrier coating system was formed with a top coat of hollow alumina spheres, an intermediate thermally grown oxide and a bottom aluminized bond coat. The coating system is shown to display very low thermal conductivity and remarkable oxidation resistance at high temperatures. 展开更多
关键词 SLURRY Viscosity WETTING THERMAL Barrier coating THERMAL CONDUCTIVITY Oxidation
下载PDF
Process and performance of DAAF microspheres prepared by continuous integration from synthesis to spherical coating based on microfluidic system
9
作者 Bidong Wu Jiahui Shi +5 位作者 Mengsen Wei Rui Zhu Yi Liu Jinqiang Zhou Chongwei An Jingyu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期629-643,共15页
In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of... In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives. 展开更多
关键词 DAAF Micromixing technology Microdroplet technology SYNTHESIS Spherical coating Continuousization
下载PDF
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
10
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor coating carbon steel corrosion protection
下载PDF
Superhydrophobic and corrosion-resistant siloxane-modified MgAl-LDHs coatings on magnesium alloy prepared under mild conditions
11
作者 Wenxi Zhang Zhangzelong Zhuo +2 位作者 Dan Xu Liang Wu Zhihui Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期450-463,共14页
We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperatu... We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperature(relative to hydrothermal reaction conditions)under atmospheric pressure and an outer polysiloxane layer created from a solution containing perfluorodecyltrimethoxysilane(PFDTMS)using a simple immersion method.The successful intercalation of tungstate into the LDH phase and the following formation of the polysiloxane layer were confirmed through X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the LDH-W film,both before and after the PFDTMS modification,was evaluated using electrochemical impedance spectroscopy(EIS),Tafel curves,and immersion experiments.The results showed that Mg coated with LDH-W/PFDTMS exhibited significantly enhanced corrosion protection compared to the unmodified LDHW film,with no apparent signs of corrosion after exposure to 3.5wt%NaCl solution for 15 d.Furthermore,the LDH-W/PFDTMS coating demonstrated superior superhydrophobicity and self-cleaning properties against water and several common beverages,as confirmed by static contact angle and water-repellency tests.These results offer valuable insights into preparing superhydrophobic and corrosion-resistant LDH-based composite coatings on Mg alloy surfaces under relatively mild reaction conditions. 展开更多
关键词 Mg alloy CORROSION coating layered double hydroxide
下载PDF
Towards understanding and prediction of corrosion degradation of organic coatings under tropical marine atmospheric environment via a data-driven approach
12
作者 Shaopeng Liu Lingwei Ma +5 位作者 Jinke Wang Yiran Li Haiyan Gong Haitao Ren Xiaogang Li Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1151-1161,共11页
The corrosion degradation of organic coatings in tropical marine atmospheric environments results in substantial economic losses across various industries.The complexity of a dynamic environment,combined with high cos... The corrosion degradation of organic coatings in tropical marine atmospheric environments results in substantial economic losses across various industries.The complexity of a dynamic environment,combined with high costs,extended experimental periods,and limited data,places a limit on the comprehension of this process.This study addresses this challenge by investigating the corrosion de-gradation of damaged organic coatings in a tropical marine environment using an atmospheric corrosion monitoring sensor and a random forest(RF)model.For damage simulation,a polyurethane coating applied to a Fe/graphite corrosion sensor was intentionally scratched and exposed to the marine atmosphere for over one year.Pearson correlation analysis was performed for the collection and filtering of en-vironmental and corrosion current data.According to the RF model,the following specific conditions contributed to accelerated degrada-tion:relative humidity(RH)above 80%and temperatures below 22.5℃,with the risk increasing significantly when RH exceeded 90%.High RH and temperature exhibited a cumulative effect on coating degradation.A high risk of corrosion occurred in the nighttime.The RF model was also used to predict the coating degradation process using environmental data as input parameters,with the accuracy show-ing improvement when the duration of influential environmental ranges was considered. 展开更多
关键词 organic coating degradation atmospheric corrosion machine learning exposure test random forest coating sensor
下载PDF
Enhancing Coating Inoculation for Improved Nitrogen-Fixing Efficiency of Rhizobia in Soybean (Glycine max L.)
13
作者 Anne Nora Ndokon Bikang Liliane Meguekam Tekam +1 位作者 Alain-Martial Sontsa-Donhoung Dieudonné Nwaga 《American Journal of Plant Sciences》 2025年第2期245-262,共18页
Plant biofertilization involves introducing compounds containing living mi-croorganisms into the coating medium to sustainably enhance plant production and soil health. This is a complex process that undergoes multipl... Plant biofertilization involves introducing compounds containing living mi-croorganisms into the coating medium to sustainably enhance plant production and soil health. This is a complex process that undergoes multiple stages of development before yielding a final product. The final biofertilizer is used by legumes-protein-rich crops in symbiosis with rhizobia to enable biological nitrogen fixation increasing natural soil fertility. This study aims to determine the optimal formulation of a rhizobial biofertilizer to improve the performance of soybean (Glycine max L. cv. Docko). To this end, soybean seeds obtained from IRAD were coated with different formulations derived from locally sourced materials. Palm kernel oil was used as an adhesive in one group, while corn powder served as an adhesive in another. The coated seeds were then sown in the field. The results indicate that the combination of pigeon pea powder + sugarcane molasses, with palm kernel oil as an adhesive, produced the best nodulation (nitrogen fixation). This formulation also led to significant improvements in growth (+350%) and total nitrogen content (+1100%) compared to the bacterial broth inoculum control (B0) (P ≤ 0.01). These findings represent a significant advancement in improving nitrogen-fixing bacterial inoculants and enhancing soil fertility for the sustainable cultivation of soybeans in this tropical soil. 展开更多
关键词 FORMULATION BIOFERTILIZER N-Fixing RHIZOBIA coating Growth
下载PDF
Dynamic modeling and simulation of blade-casing system with rubbing considering time-varying stiffness and mass of casing
14
作者 Hui MA Hong GUAN +4 位作者 Lin QU Xumin GUO Qinqin MU Yao ZENG Yanyan CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期849-868,共20页
As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminat... As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminated shell element is used to establish the finite element model(FEM)of a flexibly coated casing system.Using the shell element,the blade is modeled,and the surface stress of the blade is calculated.The stress-solving method of the blade is validated through comparisons with the measured time-domain waveform of the stress.Then,a dynamic model of a blade-flexibly coated casing system with rubbing is proposed,accounting for the time-varying mass and stiffness of the casing caused by coating wear.The effects of the proposed flexible casing model are compared with those of a rigid casing model,and the stress changes induced by rubbing are investigated.The results show that the natural characteristics of the coated casing decrease due to the coating wear.The flexibly coated casing model is found to be more suitable for studying casing vibration.Additionally,the stress changes caused by rubbing are slight,and the change in the stress maximum is approximately 5%under the influence of the abrasive coating. 展开更多
关键词 dynamic modeling flexibly coated casing RUBBING coating wear nonlinear vibration
下载PDF
Synergistic effect of nitrocellulose coating on structural and reactivity stabilization of ammonium nitrate oxidizer
15
作者 Amir Abdelaziz Djalal Trache +5 位作者 Ahmed Fouzi Tarchoun Hani Boukeciat Yash Pal Sourbh Thakur Weiqiang Pang Thomas M.Klapötke 《Defence Technology(防务技术)》 2025年第1期35-43,共9页
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has... The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations. 展开更多
关键词 Ammonium nitrate NITROCELLULOSE STABILIZATION coating Thermolysis kinetics
下载PDF
Achieving precise graphenization of diamond coatings below the interfacial thermal stress threshold
16
作者 Bo Yan Ning He +7 位作者 Ni Chen Matthias Weigold Huiwen Chen Shuchen Sun Yang Wu Shiyang Fu Liang Li Eberhard Abele 《International Journal of Extreme Manufacturing》 2025年第1期504-520,共17页
Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and fr... Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and friction behavior of diamond coatings can impede their ability to meet the demanding requirements of advanced engineering surfaces.This study proposed the thermal stress control at coating interfaces and demonstrated a novel process of precise graphenization on conventional diamond coatings surface through laser induction and mechanical cleavage,without causing damage to the metal substrate.Through experiments and simulations,the influence mechanism of surface graphitization and interfacial thermal stress was elucidated,ultimately enabling rapid conversion of the diamond coating surface to graphene while controlling the coating’s thickness and roughness.Compared to the original diamond coatings,the obtained surfaces exhibited a 63%-72%reduction in friction coefficients,all of which were below 0.1,with a minimum of 0.06,and a 59%-67%decrease in specific wear rates.Moreover,adhesive wear in the friction counterpart was significantly inhibited,resulting in a reduction in wear by 49%-83%.This demonstrated a significant improvement in lubrication and inhibition of mechanochemical wear properties.This study provides an effective and cost-efficient avenue to overcome the application bottleneck of engineered diamond surfaces,with the potential to significantly enhance the performance and expand the application range of diamond-coated components. 展开更多
关键词 diamond coating GRAPHENE laser thermal stress lubrication and anti-wear
下载PDF
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel
17
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles MICROSTRUCTURE wear resistance
下载PDF
Smart gradient coating suitable for bone growth prepared on plasma-electrolytically oxidised Mg and its sequential degradation behaviour
18
作者 Jiaping Han Kai Fu +6 位作者 Zhiqiang Jiang Hao Zhang Hongshan San Hui Chen Xiaopeng Lu Carsten Blawert Mikhail.L.Zheludkevich 《Journal of Magnesium and Alloys》 2025年第1期356-378,共23页
A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium pho... A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium phosphate dihydrate and hydroxyapatite(DCPD and HA)was deposited,followed by a collagen/CaP layer.The morphological evolution,sequential degradation behaviour,and in vitro bio-properties of the coatings were investigated.The incorporation of collagen remarkably refined the morphology of the CaP,and a more aggregated nano-spherical morphology was observed with increasing collagen concentration.Sr could partially replace Ca in the CaP crystals.Collagen combined with CaP formed a relatively stable skeletal frame,which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue,as well as a more promising proliferation and differentiation ability of osteoblasts.A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation. 展开更多
关键词 Biomedical magnesium alloys Gradient coating Sequential degradation Barrier property Bone formation BIOCOMPATIBILITY
下载PDF
Highly corrosion-resistant and photocatalytic hybrid coating on AZ31 Mg alloy via plasma electrolytic oxidation with organic-inorganic integration
19
作者 Talitha Tara Thanaa Mohammad Aadil +3 位作者 Alireza Askari Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 2025年第1期260-282,共23页
This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation(PEO).The PEO proc... This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation(PEO).The PEO process typically generates a porous oxide layer,which can reduce corrosion protection by allowing corrosive agents to penetrate the substrate.To address this limitation,phenopyridine(PHEN)and 2-methylimidazole(2-IMD)were incorporated into the PEO surface to form a robust organic layer on the Mg alloy.Potassium hydroxide(KOH)was used to adjust the pH,improving the interaction and solubility between the organic molecules and the PEO coating.The hybrid coating exhibited unique twig-like surface structures that contributed to forming a multifunctional coating with high corrosion resistance and superior photocatalytic activity.The PEO-PHEN-2IMD sample on the Mg alloy demonstrated exceptional corrosion resistance,with the lowest corrosion current density(I_(corr))of 1.92×10^(-10) A/cm^(2),a high corrosion potential(Ecorr),and the highest top layer resistance(R_(top))of 2.57×10^(6)Ω·cm^(2),indicating excellent barrier properties.Additionally,the coating achieved complete(100%)degradation of methylene blue(MB)within 30 min under visible light.Density Functional Theory(DFT)calculations provide deeper insights into the bonding mechanisms and interaction stability between PHEN,2-IMD,and the PEO layer on the Mg alloy and MB dye.These findings confirmed the enhanced performance of the hybrid coating in both corrosion resistance and photocatalytic applications. 展开更多
关键词 Mg alloy Hybrid coating Phenopyridine-2methylimidazole complex CORROSION Photocatalytic activity
下载PDF
Improving electrochemical performance of silicon anode through building“soft-hard” double-layer coating
20
作者 Xiao Zhu Weibo Feng Yiman Huang 《Green Energy & Environment》 2025年第3期609-618,共10页
Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes... Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials. 展开更多
关键词 Silicon Lithium ion battery ANODE “Soft-hard”coating Energy storage
下载PDF
上一页 1 2 234 下一页 到第
使用帮助 返回顶部