期刊文献+
共找到2,565篇文章
< 1 2 129 >
每页显示 20 50 100
HVOF-sprayed HAp/S53P4 BG composite coatings on an AZ31 alloy for potential applications in temporary implants
1
作者 Carlos A.Poblano-Salas John Henao +6 位作者 Astrid L.Giraldo-Betancur Paola Forero-Sossa Diego German Espinosa-Arbelaez Jorge A.González-Sánchez Luis R.Dzib-Pérez Susana T.Estrada-Moo Idelfonso E.Pech-Pech 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期345-360,共16页
Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA... Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF). 展开更多
关键词 coatings Composites Thermal spray Temporary implants Hydrogen evolution
下载PDF
Development of Modified Glasses by Transparent, Functional Hybrid Sol-Gel Nano-Ceramic Coatings, a Comparative Study
2
作者 Md. Barkat Ullah Yeasmin Akter +1 位作者 Khodeja Afrin Md. Saiful Quddus 《World Journal of Engineering and Technology》 2024年第1期170-184,共15页
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil... This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields. 展开更多
关键词 SOL-GEL Nano-Ceramic coatings Self-Cleaning Glass Water Contact Angle Optical Transmission
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts
3
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Surface Metallization of Glass Fiber(GF)/Polyetheretherketone(PEEK) Composite with Cu Coatings Deposited by Magnetron Sputtering and Electroplating
4
作者 钟利 金凡亚 +2 位作者 朱剑豪 TONG Honghui DAN Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期213-220,共8页
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc... Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating. 展开更多
关键词 surface metallization Cu coating magnetron sputtering ELECTROPLATING
原文传递
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
5
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 Magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION BIOCOMPATIBILITY
下载PDF
Review:Fabrication and Application of Zwitterion-based Functional Coatings
6
作者 Jinyan Tan Shuxue Zhou +1 位作者 A.Catarina C.Esteves Limin Wu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第6期9-26,共18页
Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and neg... Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and negative charges renders the zwitterion-based materials with electrostatically induced hydration properties, which enables a high resistance towards oily pollutants, nonspecific protein adsorption, bacterial adhesion and biofilm formation. This review starts from the working mechanism of zwitterions and covers the fabrication strategies of zwitterion-based functional coatings, namely the zwitterion-bearing binder route, the zwitterion-bearing additive route and the post-generation of coatings containing zwitterionic precursors. The applications of zwitterion-based functional coatings are discussed, including medical implants, marine antifouling and oil-resistant coatings, with focus on the relevant mechanisms of the zwitterion-containing coatings for a specific performance. Finally, some comments and perspectives on the current situation and future development of zwitterion-based functional coatings are given. 展开更多
关键词 zwitterionic materials functional coatings medical implant coatings marine antifouling coatings oil-resistant coatings amphiphilic coatings degradable coatings
下载PDF
Review on the phosphate-based conversion coatings of magnesium and its alloys 被引量:2
7
作者 Debasis Saran Atul Kumar +2 位作者 Sivaiah Bathula David Klaumünzer Kisor K Sahu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1435-1452,共18页
Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge ... Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated. 展开更多
关键词 phosphate conversion coatings magnesium alloys CORROSION zinc phosphate conversion coatings calcium phosphate conversion coatings magnesium phosphate conversion coatings
下载PDF
Cerium Methacrylate Assisted Preparation of Highly Thermally Conductive and Anticorrosive Multifunctional Coatings for Heat Conduction Metals Protection
8
作者 Fei Xu Peng Ye +7 位作者 Jianwen Peng Haolei Geng Yexiang Cui Di Bao Renjie Lu Hongyu Zhu Yanji Zhu Huaiyuan Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期172-184,共13页
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive... Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection. 展开更多
关键词 Epoxy coatings Thermal conductivity ANTI-CORROSION HYDROPHOBICITY Cerium methacrylate
下载PDF
New superhydrophobic composite coatings on Mg-Mn-Ce magnesium alloy
9
作者 K.V.Nadaraia S.N.Suchkov +5 位作者 I.M.Imshinetskiy D.V.Mashtalyar D.Yu.Kosianov E.A.Belov S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1721-1739,共19页
A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subs... A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction. 展开更多
关键词 Magnesium alloy Plasma electrolytic oxidation SUPERHYDROPHOBICITY FLUOROPOLYMERS Composite coatings
下载PDF
Effect of TiO_(2) nanoparticles on the photocatalytic properties of PEO coatings on Mg alloy
10
作者 D.V.Mashtalyar I.M.Imshinetskiy +7 位作者 K.V.Nadaraia A.S.Gnedenkov S.N.Suchkov D.P.Opra E.V.Pustovalov A.Yu Ustinov S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期735-752,共18页
A comprehensive study of the properties of coatings formed on a magnesium alloy by plasma electrolytic oxidation(PEO) using the electrolytes with nanosized particles of anatase(titanium dioxide) has been carried out. ... A comprehensive study of the properties of coatings formed on a magnesium alloy by plasma electrolytic oxidation(PEO) using the electrolytes with nanosized particles of anatase(titanium dioxide) has been carried out. Formed coatings reduce corrosion current density 2.5-fold and increase hardness by 25% compared to a coating without particles. Confocal micro-Raman spectroscopy revealed the presence of anatase and rutile phases in the composition of PEO coating due to the incorporation of TiO2nanoparticles during plasma electrolytic treatment. The presence of titanium dioxide had a positive effect on the photocatalytic properties of coatings: the constant rate of the methyl orange and methyl blue decomposition is increased in 1.6 and 1.8-fold, respectively, compared to the coating formed in electrolyte without TiO_(2) particles. 展开更多
关键词 Plasma electrolytic oxidation NANOPARTICLES Titanium dioxide PHOTOCATALYSIS Protective coatings
下载PDF
Recent progress in self-repairing coatings for corrosion protection on magnesium alloys and perspective of porous solids as novel carrier and barrier
11
作者 Yajie Yang Yufei Wang +5 位作者 Mei-Xuan Li Tianshuai Wang Dawei Wang Cheng Wang Min Zha Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3585-3608,共24页
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti... Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions. 展开更多
关键词 Mg alloys coatings SELF-REPAIRING Corrosion protection Porous solids
下载PDF
Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO_(2)/SiO_(2)/Si_(3)N_(4) micron particles
12
作者 赵洋春 周勇敏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期498-507,共10页
Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO_(2), SiO_(2), and Si_(3)... Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO_(2), SiO_(2), and Si_(3)N_(4)micron particles for radiative cooling is proposed in this study. The finite-difference time-domain algorithm is used to analyze the influence of particle size and coating thickness on radiative cooling performance. The results of the simulation show that the particle size of 3 μm can give the best cooling performance, and the coating thickness should be above 25 μm for SiO_(2)coating. Meanwhile, the mixture of SiO_(2)and Si_(3)N_(4)significantly improves the overall emissivity. Through sample preparation and characterization,the mixture coating with a 1:1 ratio addition on an Al substrate exhibits high reflectivity with a value of 87.6% in the solar spectrum, and an average emissivity of 92% in the infrared region(2.5 μm–15 μm), which can be attributed to the synergy among the optical properties of the material. Both coatings can theoretically be cooled by about 8℃ during the day and about 21℃ at nighttime with hc = 4 W·m^(-2)·K^(-1). Furthermore, even considering the significant conduction and convection exchanges, the cooling effect persists. Outdoor experimental results show that the temperature of the double-layer radiative cooling coating is always lower than the ambient temperature under direct sunlight during the day, and can be cooled by about 5℃ on average, while lower than the temperature of the aluminum film by almost 12℃. 展开更多
关键词 radiative cooling coatings thermal radiation infrared emissivity
原文传递
Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings
13
作者 Hongbo Ju Moussa Athmani +6 位作者 Jing Luan Abbas AL-Rjoub Albano Cavaleiro Talha Bin Yaqub Abdelouahad Chala Fabio Ferreira Filipe Fernandes 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2459-2468,共10页
In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear pe... In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current(DC)reactive magnetron sputtering is investigated.The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings.In general,two layers are formed during the oxidation process:i)Ti(V)O_(2) on top,followed by a protective layer,which is subdivided into two layers,Cr_(2)O_(3) and Si-O.ii)The diffusion of V controls the oxidation of V-containing coatings.The addition of vanadium improves the wear resistance of coatings,and the wear rate decreases with increasing V content in the coatings;however,the friction coefficient is independent of the chemical composition of the coatings.The wear of the V-containing coatings is driven by polishing wear. 展开更多
关键词 DC magnetron sputtering TiSiN/CrVxN multilayer coatings oxidation resistance TRIBOLOGY wear rate
下载PDF
Electrochemical synthesis of boron-containing coatings on Mg alloy for thermal neutron shielding
14
作者 K.V.Nadaraia S.N.Suchkov +6 位作者 N.S.Markin I.M.Imshinetskiy S.I.Ivannikov D.V.Mashtalyar A.Yu.Ustinov S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3779-3789,共11页
The work provides the results of the one-step formation of boron-containing coatings on an Mg–Mn–Ce alloy by plasma electrolytic oxidation. The results of studies of the composition, structure and morphology of hete... The work provides the results of the one-step formation of boron-containing coatings on an Mg–Mn–Ce alloy by plasma electrolytic oxidation. The results of studies of the composition, structure and morphology of heteroxide coatings are presented. It was established that the boron is contained in the coating mainly in the form of B or B_(2)O_(3). The introduction of B changes the color of coatings, and also helps to increase their porosity. The method of determining the full cross section of the interaction of thermal neutron absorption efficiency by samples material using the installation of neutron-activation analysis based on ^(252)Cf was developed. It was shown that the introduction of boron into the formed coatings allows to increase the macroscopic cross-section of the interaction of samples with thermal neutrons by 3.8 times. This effect opens the potential for the use of synthesized material in the field of nuclear technologies and aerospace industry. 展开更多
关键词 Plasma electrolytic oxidation BORON Neutron capture Neutron shielding Protective coatings
下载PDF
Corrosion behavior of composite coatings containing hydroxyapatite particles on Mg alloys by plasma electrolytic oxidation: A review
15
作者 Arash Fattah-alhosseini Razieh Chaharmahali +1 位作者 Sajad Alizad Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期2999-3011,共13页
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep... Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO. 展开更多
关键词 Mg and its alloys HYDROXYAPATITE Corrosion behavior Composite coatings Plasma electrolytic oxidation(peo)
下载PDF
Thermal Analysis of Turbine Blades with Thermal Barrier Coatings Using Virtual Wall Thickness Method
16
作者 Linchuan Liu Jian Wu +4 位作者 Zhongwei Hu Xiaochao Jin Pin Lu Tao Zhang Xueling Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1219-1236,共18页
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho... Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively. 展开更多
关键词 Turbine blade thermal analysis thermal barrier coatings finite element method virtual wall thickness
下载PDF
Comparison of Nanofibrillated Cellulose and Hydroxyethyl Cellulose in Improving the Storage Stability of Waterborne Coatings
17
作者 Xinqi Li Jinghuan Chen +2 位作者 Jingang Liu Tao Zhao Kaiji Yang 《Paper And Biomaterials》 CAS 2023年第4期1-8,共8页
Waterborne coatings often delaminate and settle during long-term storage,requiring the addition of thickeners.The effects of nanofibrillated cellulose(NFC)and the commonly used thickener,hydroxyethyl cellulose(HEC),on... Waterborne coatings often delaminate and settle during long-term storage,requiring the addition of thickeners.The effects of nanofibrillated cellulose(NFC)and the commonly used thickener,hydroxyethyl cellulose(HEC),on the storage stability of waterborne coatings were compared in this study.The morphology of NFC was characterized using infrared spectroscopy(FT-IR)and scanning electron microscopy(SEM).The rotational viscosity and rheological properties of the waterborne coatings with NFC and HEC were tested.Stationary settling experiments were also conducted at different temperatures to compare the difference of NFC and HEC on improving the storage stability of the waterborne coatings.The results showed that the waterborne coating with NFC exhibited pseudoplastic fluid characteristics;a small addition of NFC can achieve the same improvement effect on the storage stability of waterborne coatings as HEC.Further,the improvement effect of NFC was not affected by temperature.The waterborne coating with NFC still exhibited good storage stability at high temperatures,which was significantly superior to that of HEC.Therefore,NFC is a feasible agent for improving the prolonged storage stability and warming-induced delamination of waterborne coatings. 展开更多
关键词 waterborne coatings nanofibrillated cellulose hydroxyethyl cellulose yield stress storage stability
下载PDF
Study on the Attack of Molten Silicates on Plasma-Sprayed Thermal Barrier Coatings
18
作者 Roberto Fernando Martins Karl Friehe +3 位作者 Cecília Chaves Guedes e Silva Dolores Ribeiro Ricci Lazar Antônio Augusto Couto Carlos Roberto Camello Lima 《Journal of Minerals and Materials Characterization and Engineering》 2023年第5期115-130,共16页
Thermal barrier coating (TBC) revolutionized the industry by allowing higher operating temperatures for equipment, such as gas turbines in the aeronautical industry. However, at high temperatures, the TBC is exposed t... Thermal barrier coating (TBC) revolutionized the industry by allowing higher operating temperatures for equipment, such as gas turbines in the aeronautical industry. However, at high temperatures, the TBC is exposed to the attack of molten silicates, known as CMAS (Calcium-Magnesium-Alumino-Silicate), which are particles from the environment that infiltrate the TBC, causing delamination. In this study, samples coated with TBC by thermal spray and covered with CMAS were evaluated at temperatures of 1200˚C and 1250˚C. For each temperature, exposure times of 1 h and 5 h were used. Samples with longer exposure time had a considerable volume increase. The main contribution of this work was to demonstrate the non-wettability of the CMAS, even in the 5-h heat treatments, which prevented its infiltration in the deeper regions. The conditions to guarantee the formation of the silicate and its consequent wettability are also discussed. 展开更多
关键词 Thermal Barrier coatings Molten Silicates Thermal Spray
下载PDF
ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy 被引量:3
19
作者 Shiquan Jiang Zhiyuan Zhang +3 位作者 Dong Wang Yuqing Wen Ning Peng Wei Shang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1367-1380,共14页
Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-ar... Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates. 展开更多
关键词 Mg alloy Composite coating Metal-organic framework Corrosion resistance SUPERHYDROPHOBICITY
下载PDF
3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles 被引量:1
20
作者 Georgia Koutentaki Pavel Krýsa +3 位作者 Dan Trunov Tomás Pekarek Marketa Pislova Miroslav Soos 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第3期276-286,共11页
The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructiv... The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles.The results showed that the wax existed in two forms on the surface of the paracetamol particles,forming a porous coating layer:i)whole wax particles on the surface of paracetamol and glued together with other wax surface particles,and ii)deformed wax particles spread on the surface.Regardless of the final particle size fraction(between 100 and 800 mm),the coating thickness had high variability,with average thickness of 5.9±4.2 mm.The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations.The dissolution was slower for larger coated particles.Tableting further reduced the dissolution rate,clearly indicating the impact of subsequent formulation processes on the final quality of the product. 展开更多
关键词 Raman mapping Dry-coating DISSOLUTION Particle coating thickness POLYMERS
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部