期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A deoxidation thermodynamic model for 304 stainless steel considering multiple-components coupled reactions
1
作者 Yan Yan Guang-hao Shang +2 位作者 Li-ping Zhang Shao-ying Li Han-jie Guo 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第1期74-91,共18页
A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.... A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents. 展开更多
关键词 Complex deoxidation Thermodynamic model ion and molecule coexistence theory 304 stainless steel Slag-steel reaction
原文传递
Influence of refining process and utilization of different slags on inclusions, titanium yield and total oxygen content of Ti-stabilized 321 stainless steel 被引量:2
2
作者 Xing-run Chen Guo-guang Cheng +2 位作者 Yu-yang Hou Jing-yu Li Ji-xiang Pan 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第8期913-921,共9页
Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining proce... Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining pro-cess. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and -TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the -TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using -TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexist-ence theory and FactSage?7.2 software calculations. When -TiO2-rich CaO–Al2O3-based slag was used, the -TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher -TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O. 展开更多
关键词 321 Austenitic stainless steel Oxygen content INCLUSion TiO2-rich CaO–Al2O3-based slag Ladle furnace(LF)refining process ion–molecule coexistence theory
原文传递
Mathematical model for design of optimized multi component slag for electroslag remelting
3
作者 Shi-jian Li Guo-guang Cheng +2 位作者 Yu Huang Wei-xing Dai Zhi-qi Miao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第4期380-391,共12页
Slag is the heart of electroslag remelting(ESR)process.A new mathematical model to design the optimized slag for ESR was developed based on slag–metal equilibrium theory,ion and molecule coexistence theory and modifi... Slag is the heart of electroslag remelting(ESR)process.A new mathematical model to design the optimized slag for ESR was developed based on slag–metal equilibrium theory,ion and molecule coexistence theory and modified Butler’s equation.It was assumed that an overall thermodynamic equilibrium did exist at electrode tip–slag interface.With this model,the equilibrium slag and its surface tension could be obtained quantitatively when the initial compositions of consumable electrode were given.An industrial experiment with four types of slags was carried out in a special steel plant in China.The variation of Al,Si and Mn corresponded well with the deviation of corresponding oxide from equilibrium,reflecting the reasonability of the model.Besides that,the effects of Al in electrode as well as CaO,CaF2 and MgO in slag on the equilibrium slag,dissolved oxygen and surface tension were discussed in detail. 展开更多
关键词 Electroslag remelting Model Slag design ion and molecule coexistence theory Equilibrium slag
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部