期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Cross-Layer Framework for Capacity Analysis in Multiuser Ultra-Dense Networks with Cell DTx 被引量:4
1
作者 Qing Li Yu Chen +2 位作者 Qimei Cui Yu Gu Guoqiang Mao 《China Communications》 SCIE CSCD 2019年第9期106-121,共16页
Cell discontinuous transmission(Cell DTx)is a key technology to mitigate inter-cell interference(ICI)in ultra-dense networks(UDNs).The aim of this work is to understand the impact of Cell DTx on physical-layer sum rat... Cell discontinuous transmission(Cell DTx)is a key technology to mitigate inter-cell interference(ICI)in ultra-dense networks(UDNs).The aim of this work is to understand the impact of Cell DTx on physical-layer sum rates of SBSs and link-layer quality-of-service(QoS)performance in multiuser UDNs.In this work,we develop a cross-layer framework for capacity analysis in multiuser UDNs with Cell DTx.In particular,we first extend the traditional one-dimensional effective capacity model to a new multidimensional effective capacity model to derive the sum rate and the effective capacity.Moreover,we propose a new iterative bisection search algorithm that is capable of approximating QoS performance.The convergence of this new algorithm to a unique QoS exponent vector is later proved.Finally,we apply this framework to the round-robin and the max-C/I scheduling policies.Simulation results show that our framework is accurate in approximating 1)queue length distribution,2)delay distribution and 3)sum rates under the above two scheduling policies,and further show that with the Cell DTx,systems have approximately 30% higher sum rate and 35% smaller average delay than those in full-buffer scenarios. 展开更多
关键词 effective capacity QoS performance SUM rates MULTIUSER scheduling ultra-dense network (udn)
下载PDF
A Pilot Contamination Avoidance Based on Pilot Pattern Design for Ultra-Dense Network
2
作者 Jie Huang Fan Yang +2 位作者 Yiwen Gao Zhiming Wang Jun Zhong 《China Communications》 SCIE CSCD 2020年第12期235-246,共12页
With the ever-growing number of base stations(BSs)and user equipments(UEs)in ultra-dense networks(UDN),reusing the same pilot sequences among the cells is inevitable.With pilot reuse scheme,the channel estimation obta... With the ever-growing number of base stations(BSs)and user equipments(UEs)in ultra-dense networks(UDN),reusing the same pilot sequences among the cells is inevitable.With pilot reuse scheme,the channel estimation obtained at a BS contains not only the desired channel-state information(CSI)but also interference from neighboring cells,which can severely degrade CSI estimation performance and adversely affect communication performance.In this paper we consider a pilot contamination avoidance based on pilot pattern design for UDN where the pilot reuse employed and the interfering users from neighboring cells may be not at lower power levels at the BS compared to the in-cell users.We present a novel statistical interference model of sub-carriers to describe the non-deterministic interference from neighboring cells.Then,we provide a pilot pattern design model with non-uniform pilot distribution.Based on this,a pilot contamination avoidance based on pilot pattern design is proposed where pilot reuse scheme and the non-deterministic interference from neighboring cells are taken into consideration.Unlike existing interference mitigation approaches,the proposed method eliminates interference through the method of interference avoidance and can be applied to different kinds of channel estimation algorithms.Simulation results showed that the proposed approach can effectively avoid the interference and ensure the accuracy of channel estimation. 展开更多
关键词 ultra-dense networks(udn) pilot reuse interference avoidance pilot pattern design
下载PDF
非完美频谱感知下认知超密集网络的资源分配
3
作者 李凡 仇润鹤 《计算机应用研究》 CSCD 北大核心 2024年第6期1833-1839,共7页
针对实际认知超密集网络场景中认知无线电存在非完美频谱感知的情况,提出了一种基于非完美频谱感知的资源分配方案,目标是在考虑跨/同层干扰约束、保障用户服务质量下,最大化非完美频谱感知下认知超密集网络中次级网络的能效。为此,依... 针对实际认知超密集网络场景中认知无线电存在非完美频谱感知的情况,提出了一种基于非完美频谱感知的资源分配方案,目标是在考虑跨/同层干扰约束、保障用户服务质量下,最大化非完美频谱感知下认知超密集网络中次级网络的能效。为此,依据网络模型构建能效优化问题,其为混合整数非凸规划问题,先通过分时共享松弛法和丁克尔巴赫法将其转换成等价的凸优化问题,再使用拉格朗日对偶法求其最优解,以此获得最优能效时的子信道和功率分配策略。基于此,提出了一种迭代的子信道和功率分配算法;为权衡计算复杂度,还提出了一种实用的子信道和功率分配算法。仿真结果表明,所提算法都有效地提升了网络能效。 展开更多
关键词 非完美频谱感知 认知超密集网络 跨/同层干扰约束 能效
下载PDF
Joint Computation Offloading and Resource Allocation for Mobile-Edge Computing Assisted Ultra-Dense Networks 被引量:3
4
作者 Ya Gao Haoran Zhang +2 位作者 Fei Yu Yujie Xia Yongpeng Shi 《Journal of Communications and Information Networks》 EI CSCD 2022年第1期96-106,共11页
Mobile-edge computing(MEC),enabling to offload computing tasks on mobile devices towards edge servers,can reduce the terminals cost.However,a single MEC sever usually has limited computing capabilities,which can not m... Mobile-edge computing(MEC),enabling to offload computing tasks on mobile devices towards edge servers,can reduce the terminals cost.However,a single MEC sever usually has limited computing capabilities,which can not meet a large number of terminals’requirements.In this paper,we consider an ultra-dense networks(UDN)scenario where the macro base stations(MBSs)are assisted by MEC severs.In particular,we first construct system model for MEC assisted UDN,and build the system overhead minimization.Next,in order to solve the problem,we transform the problem into three sub-problems,i.e.,offloading strategies subproblem,channel assignments subproblem,and power allocation subproblem.Then,employing joint offloading and resource allocation algorithms,we obtain the optimal joint strategy for the MEC assisted UDNs.Finally,simulations are conducted to evaluate the performance of our proposed algorithms.Numerical results show that obtained algorithms can effectively reduce the energy consumption of the system and improve the overall performance of the system. 展开更多
关键词 mobile-edge computing(MEC) ultra-dense networks(udn) task offloading power allocation
原文传递
Dynamic hierarchical collaborative caching scheme in ultra-dense networks
5
作者 Chen Jianing Li Xi +1 位作者 Ji Hong Zhang Heli 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第1期78-86,共9页
Pushing popular contents to the edge of the network can meet the growing demand for data traffic, reduce latency and relieve the pressure of the backhaul. However, considering the limited storage space of the base sta... Pushing popular contents to the edge of the network can meet the growing demand for data traffic, reduce latency and relieve the pressure of the backhaul. However, considering the limited storage space of the base stations, it is impossible to cache all the contents, especially in ultra-dense network(UDN). Furthermore, the uneven distribution of mobile users results in load imbalance among small base stations(SBSs) in both time and space, which also affects the caching strategy. To overcome these shortcoming, the impact of the changing load imbalance in UDN was investigated, and then a dynamic hierarchical collaborative caching(DHCC) scheme was proposed to optimize latency and caching hit rate. The storage of the SBS is logically divided into the independent caching layer and the collaborative caching layer. The independent caching layer caches the most popular contents for local users’ interest, and the collaborative caching layer caches contents as much as possible for the benefit of content diversity in the region. Different SBSs have respective storage space layer division ratios, according to their real-time traffic load. For SBSs with heavy load, the independent caching layers are allocated with more space. Otherwise, the collaborative caching layers could store more contents with larger space. The simulation results show that, DHCC improved both transmission latency and hit rate compared with existing caching schemes. 展开更多
关键词 ultra-dense network(udn) load imbalance CACHING
原文传递
Dynamic computation offloading in time-varying environment for ultra-dense networks:a stochastic game approach
6
作者 Xie Renchao Liu Xu +3 位作者 Duan Xuefei Tang Qinqin Yu Fei Richard Huang Tao 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第2期24-37,共14页
To meet the demands of large-scale user access with computation-intensive and delay-sensitive applications,combining ultra-dense networks(UDNs)and mobile edge computing(MEC)are considered as important solutions.In the... To meet the demands of large-scale user access with computation-intensive and delay-sensitive applications,combining ultra-dense networks(UDNs)and mobile edge computing(MEC)are considered as important solutions.In the MEC enabled UDNs,one of the most important issues is computation offloading.Although a number of work have been done toward this issue,the problem of dynamic computation offloading in time-varying environment,especially the dynamic computation offloading problem for multi-user,has not been fully considered.Therefore,in order to fill this gap,the dynamic computation offloading problem in time-varying environment for multi-user is considered in this paper.By considering the dynamic changes of channel state and users’queue state,the dynamic computation offloading problem for multi-user is formulated as a stochastic game,which aims to optimize the delay and packet loss rate of users.To find the optimal solution of the formulated optimization problem,Nash Q-learning(NQLN)algorithm is proposed which can be quickly converged to a Nash equilibrium solution.Finally,extensive simulation results are presented to demonstrate the superiority of NQLN algorithm.It is shown that NQLN algorithm has better optimization performance than the benchmark schemes. 展开更多
关键词 dynamic computation offloading time-varying environment stochastic game ultra-dense networks(udns) mobile edge computing(MEC)
原文传递
认知超密集网络用户关联与资源分配联合优化遗传算法 被引量:4
7
作者 张俊杰 仇润鹤 《计算机应用》 CSCD 北大核心 2022年第12期3856-3862,共7页
针对下行的异构认知超密集异构网络(UDN)的多维资源配置问题,提出一种以毫微微小区用户最大吞吐量为目标的联合优化用户关联和资源分配的改进遗传算法。首先,在算法开始之前进行预处理,初始化用户可达基站和可用信道矩阵;其次,采用符号... 针对下行的异构认知超密集异构网络(UDN)的多维资源配置问题,提出一种以毫微微小区用户最大吞吐量为目标的联合优化用户关联和资源分配的改进遗传算法。首先,在算法开始之前进行预处理,初始化用户可达基站和可用信道矩阵;其次,采用符号编码,将用户与基站以及用户与信道的匹配关系编码为一个二维的染色体;然后,将动态择优复制+轮盘赌作为选择算法,以加快种群的收敛;最后,为避免算法陷入局部最优,在变异阶段加入早熟判决的变异算子,从而在有限次迭代下求得基站、用户、信道的连接策略。实验结果表明,在基站与信道数量一定时,所提算法与三维匹配的遗传算法相比在用户总吞吐量方面提高了7.2%,在认知用户吞吐量方面提高了1.2%,且计算复杂度更低。所提算法缩小了可行解的搜索空间,能在较低复杂度下有效提高认知UDN的总吞吐量。 展开更多
关键词 超密集网络 认知无线电 异构网络 遗传算法 联合优化 用户关联 资源分配
下载PDF
基于用户分簇的认知超密集网络资源分配 被引量:3
8
作者 张俊杰 仇润鹤 《电讯技术》 北大核心 2022年第9期1321-1327,共7页
针对5G时代小基站的密集部署带来的复杂干扰问题,对下行的认知无线电超密集网络下的资源分配进行了研究。为减小网络干扰,提高次用户吞吐量,提出了一种改进的基于用户分簇的资源分配算法。基于基站的覆盖范围,选出用户的强干扰基站,以用... 针对5G时代小基站的密集部署带来的复杂干扰问题,对下行的认知无线电超密集网络下的资源分配进行了研究。为减小网络干扰,提高次用户吞吐量,提出了一种改进的基于用户分簇的资源分配算法。基于基站的覆盖范围,选出用户的强干扰基站,以用户-基站干扰关系建立用户-用户干扰图,按用户受到的平均弱干扰划分优先级对用户分簇,再为簇集群预分配频段,为每个簇分配对应频段中效用最大的信道。该资源分配算法能准确反映用户间的干扰关系,保障资源分配公平性。仿真结果表明,当用户密度与基站密度均较大时,与相同场景的已有算法相比,该改进算法有较好的抗干扰能力,能有效提高次用户的吞吐量。 展开更多
关键词 超密集网络(udn) 认知无线电(CR) 资源分配 干扰图 用户分簇
下载PDF
User association and resource allocation in green mobile edge networks using deep reinforcement learning
9
作者 Zheng Ying Sun Siyuan +1 位作者 Wei Yifei Song Mei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期1-10,27,共11页
In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-acces... In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-access edge computing(MEC) can further improve network capacity and computing capability. In addition, the integration of green energy can effectively reduce the on-grid energy consumption of system and realize green computation. This paper studies the joint optimization of user association(UA) and resource allocation(RA) in MEC enabled UDNs under the green energy supply pattern, users need to perceive the green energy status of base stations(BSs) and choose the one with abundant resources to associate. To minimize the computation cost for all users, the optimization problem is formulated as a mixed integer nonlinear programming(MINLP) which is NP-hard. In order to solve the problem, a deep reinforcement learning(DRL)-based association and optimized allocation(DAOA) scheme is designed to solve it in two stages. The simulation results show that the proposed scheme has good performance in terms of computation cost and time out ratio, as well achieve load balancing potentially. 展开更多
关键词 multi-access edge computing(MEC) ultra-dense networks(udns) deep reinforcement learning(DRL) user association(UA) resource allocation(RA) green energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部