The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X...The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc...Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.展开更多
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
[Objective] The aim was to compare and analyze microwave coherent and incoherent scattering models in a corn field. [Method] In the research, based on a coherent scattering model (Stile), we proposed a coherent scat...[Objective] The aim was to compare and analyze microwave coherent and incoherent scattering models in a corn field. [Method] In the research, based on a coherent scattering model (Stile), we proposed a coherent scattering model exclusive for corn, in which, physical optics (PO) and infinite-length dielectric cylinder were used to calculate single-scattering matrices of corn leaves and stalks. In addition, coherent components produced from interaction among the scattering mechanisms were also considered and this coherent model was compared with the Michigan Mi- crowave Canopy Scattering (MIMICS) model. The measured data in a corn filed in Gongzhuling in Jilin Province were used as the input parameters of the coherent and incoherent models. We simulated backscattering coefficients of VV and HH po- larization at L and C bands and made a comparison between the simulation results. [Result] The simulation results at L-band were poor, which indicated that we could not find regularity at early growth stage of vegetation. In addition, comparisons be- tween coherent and incoherent scattering models proved that the coherence triggered by the scattering mechanism was small. [Conclusion] In the research, we analyzed differences between coherent and incoherent scattering models with change of incident angle, and further analysis on the differences with change of vegetation and soil needed to be made in future.展开更多
In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of variou...In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science.展开更多
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result...Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtoseeond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.展开更多
We performed femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) measurements on liquid toluene and PVK film. For both samples, we selectively excited the CH stretching vibrational modes and ob...We performed femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) measurements on liquid toluene and PVK film. For both samples, we selectively excited the CH stretching vibrational modes and observed the expected quantum beat signals. The frequency of the well-defined beats is in good agreement with the energy difference between the two simultaneously excited modes, which demonstrates that a coherent coupling between the vibrational modes of the C H chemical bonds exists at the different positions of the molecules. The dephasing times of the excited modes are obtained simultaneously.展开更多
Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to real...Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the π spectral phase step.展开更多
We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microsco...We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.展开更多
We report on the theoretical and the experimental investigations of the coherent phonon dynamics in sapphire crystal using the femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) technique. The...We report on the theoretical and the experimental investigations of the coherent phonon dynamics in sapphire crystal using the femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) technique. The temporal chirped white-light continuum (WLC) is used for the Stokes pulse, therefore we can perform the selective excitation of the phonon modes without using a complicated laser system. The expected quantum beat phenomenon is clearly observed. The theoretical formulas consist very well with the experimental results. The dephasing times of the excited phonon modes, the wavenumber difference, and the phase shift between the simultaneously excited modes are obtained and discussed. This work opens up a way to study directly high-frequency coherent phonon dynamics in bulk crystals on a femtosecond time scale and is especially helpful for understanding the nature of coherent phonons.展开更多
We have determined the Raman scattering cross sections(RSCSs) of fl-carotene for C=C and C-C stretching modes, with the 1444 cm^-1 Raman band of cyclohexane as internal standard, in different solvents at low concent...We have determined the Raman scattering cross sections(RSCSs) of fl-carotene for C=C and C-C stretching modes, with the 1444 cm^-1 Raman band of cyclohexane as internal standard, in different solvents at low concentrations by measuring Raman intensity. The results show that RSCSs of β-carotene were 10^6-10^7 times larger than the general RSCSs, we analyzed that this enhancement was caused not only by the resonance Raman effect but also by nonlinear coherent CC vibration in aqueous β-carotene. Moreover, overtone and combinations of it were also observed and their intensities were 10%-20% of those of their fundamentals when β-carotene was dissolved in non-polar solvents, respectively.展开更多
In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume ...In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ~ 109 W/cm2. When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 103 and 102 when exposure times are 20 ms and 200 ms respectively.展开更多
In this paper, we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror. Optic field intensity distributions in th...In this paper, we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror. Optic field intensity distributions in the near and far field are numerically calculated for the two kinds of system. The results show that good beam quality in the far field could be obtained. It provides a theoretical basis for experimental research in the future.展开更多
Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied. The study show...Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied. The study shows that the composition of the non-coherent optical beam in the optical spectrum and the diffraction effect are decreased by Compton scattering, and the probability of forming the soliton is greatly increased. The vibration peak value in the propagation, compressed degree, changed cycle, and radius of the soliton are all smaller than those before the scattering, but its coherent radius is larger than that before the scattering. In this propagation, the self-focusing plays a key role.展开更多
基金This work was supported by the National Key R&D Program of China(No.2020YFA0405802)the Shanghai Large Scientific Facilities Center.
文摘The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375040 and 11974071)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
基金Supported by Hunan Provincial Natural Science Foundation(10JJ4027)Opening Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing(10R01)~~
文摘[Objective] The aim was to compare and analyze microwave coherent and incoherent scattering models in a corn field. [Method] In the research, based on a coherent scattering model (Stile), we proposed a coherent scattering model exclusive for corn, in which, physical optics (PO) and infinite-length dielectric cylinder were used to calculate single-scattering matrices of corn leaves and stalks. In addition, coherent components produced from interaction among the scattering mechanisms were also considered and this coherent model was compared with the Michigan Mi- crowave Canopy Scattering (MIMICS) model. The measured data in a corn filed in Gongzhuling in Jilin Province were used as the input parameters of the coherent and incoherent models. We simulated backscattering coefficients of VV and HH po- larization at L and C bands and made a comparison between the simulation results. [Result] The simulation results at L-band were poor, which indicated that we could not find regularity at early growth stage of vegetation. In addition, comparisons be- tween coherent and incoherent scattering models proved that the coherence triggered by the scattering mechanism was small. [Conclusion] In the research, we analyzed differences between coherent and incoherent scattering models with change of incident angle, and further analysis on the differences with change of vegetation and soil needed to be made in future.
基金Project supported by the National Natural Science Foundation of China(Grant No.60627003)the Foundation for Creative Team in Institution of Higher Education of Guangdong Province,China(Grant No.06CXTD009)
文摘In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science.
基金supported by the National Natural Science Foundation of China (Grant Nos.60878018 and 61008023)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China (Grant No.HIT.NSRIF.2009009)the Science and Technology Innovation Foundation,Harbin,China (Grant No.RC2007QN017030)
文摘Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtoseeond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20573028 and 20973050)
文摘We performed femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) measurements on liquid toluene and PVK film. For both samples, we selectively excited the CH stretching vibrational modes and observed the expected quantum beat signals. The frequency of the well-defined beats is in good agreement with the energy difference between the two simultaneously excited modes, which demonstrates that a coherent coupling between the vibrational modes of the C H chemical bonds exists at the different positions of the molecules. The dephasing times of the excited modes are obtained simultaneously.
基金Project supported by Programme for Changjiang Scholars and Innovative Research Team in University(PCSIRT)Shanghai Leading Academic Discipline Project(Grant No.B408)+3 种基金National Key Project for Basic Research of China(Grant Nos.2006CB806006 and 2006CB921105)Ministry of Education of China(Grant No.30800)Shanghai Municipal Natural Science Foundation(Grant No.09ZR1409300)Shanghai Municipal Science and Technology Commission(Grant No.07DZ22025)
文摘Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the π spectral phase step.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174019,61322509 and 11121091the National Basic Research Program of China under Grant No 2013CB921904
文摘We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.
基金supported by the National Natural Science Foundation of China (Grant No. 20973050)
文摘We report on the theoretical and the experimental investigations of the coherent phonon dynamics in sapphire crystal using the femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) technique. The temporal chirped white-light continuum (WLC) is used for the Stokes pulse, therefore we can perform the selective excitation of the phonon modes without using a complicated laser system. The expected quantum beat phenomenon is clearly observed. The theoretical formulas consist very well with the experimental results. The dephasing times of the excited phonon modes, the wavenumber difference, and the phase shift between the simultaneously excited modes are obtained and discussed. This work opens up a way to study directly high-frequency coherent phonon dynamics in bulk crystals on a femtosecond time scale and is especially helpful for understanding the nature of coherent phonons.
基金Supported by the National Natural Science Foundation of China(No.10774057)the Foundation of Jilin Provincial Science & Technology Department,China(No.20090534)the Opened Fund of State Key Laboratory of Integrated Optoelectronics, China(No.IOSKL-KF200908)
文摘We have determined the Raman scattering cross sections(RSCSs) of fl-carotene for C=C and C-C stretching modes, with the 1444 cm^-1 Raman band of cyclohexane as internal standard, in different solvents at low concentrations by measuring Raman intensity. The results show that RSCSs of β-carotene were 10^6-10^7 times larger than the general RSCSs, we analyzed that this enhancement was caused not only by the resonance Raman effect but also by nonlinear coherent CC vibration in aqueous β-carotene. Moreover, overtone and combinations of it were also observed and their intensities were 10%-20% of those of their fundamentals when β-carotene was dissolved in non-polar solvents, respectively.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB825802)the Major Scientific Instruments Equipment Development of China(Grant No.2012YQ15009203)+1 种基金the National Natural Science Foundation of China(Grant Nos.60878053 and 11004136)the State Key Laboratory of Precision Measurement Technology and Instruments,Tsinghua University,China(Grant No.DL12-01)
文摘In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ~ 109 W/cm2. When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 103 and 102 when exposure times are 20 ms and 200 ms respectively.
文摘In this paper, we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror. Optic field intensity distributions in the near and far field are numerically calculated for the two kinds of system. The results show that good beam quality in the far field could be obtained. It provides a theoretical basis for experimental research in the future.
基金Natural Science Basic Research Project for Education Depart ment of Henan Province Natural ScienceFoundation of Zhumadian City(058001)
文摘Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied. The study shows that the composition of the non-coherent optical beam in the optical spectrum and the diffraction effect are decreased by Compton scattering, and the probability of forming the soliton is greatly increased. The vibration peak value in the propagation, compressed degree, changed cycle, and radius of the soliton are all smaller than those before the scattering, but its coherent radius is larger than that before the scattering. In this propagation, the self-focusing plays a key role.