Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep...Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.展开更多
In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrrdinger equation by using the factorization method. The obtained generalized ra...In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrrdinger equation by using the factorization method. The obtained generalized raising and lowering operators naturally lead us to the Dirac representation space of the system which is much easier to work with, in comparison to the functional Hilbert space. The SU(1, 1) dynamical symmetry group associated with the considered system is exactly established through investigating the fact that the deduced operators satisfy appropriate commutation relations. This result enables us to construct two important and distinct classes of Barut-Girardello and Gilmore-Perelomov coherent states associated with the system. Finally, their identities as the most important task are exactly resolved and some of their nonclassical properties are illustrated, numerically.展开更多
Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). ...Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.展开更多
We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition...We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition. The scheme works in the strong-excitation regime, which is of experimental importance in view of decoherence.展开更多
This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distr...This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distribution and phase variance are calculated. Special cases of the constructed superposition states are presented. The results show that depending on the vacuum state coefficient γ and the coherent state coefficient a, it can generate a variety of nonclassical states.展开更多
This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseud...This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseudoclassical states. According to the analysis, it is found that the superposition state of two coherent states with their phase differences π/2 and 3π/2, and the superposition state of two pseudoclassical states both do exhibit the amplitude-squared squeezing. Also, some specific states are found to exhibit even stronger squeezing effects when relative phase of the superposition is equal to the average photon number. Amplitude-squared squeezing is dependent on the difference in phase between two coherent states.展开更多
Two new types of quantum states are constructed by applying the operator s(ξ) = exp(ξ* ab - ξa+b+) on the two-mode even and odd coherent states. The mathematical and quantum statistical properties of such st...Two new types of quantum states are constructed by applying the operator s(ξ) = exp(ξ* ab - ξa+b+) on the two-mode even and odd coherent states. The mathematical and quantum statistical properties of such states are investigated. Various nonclassical features of these states, such as squeezing properties, the inter-mode photon bunching, and the violation of Cauchy-Schwarz inequality, are discussed. The Wigner function in these states are studied in detail.展开更多
Canonical quantization covers a broad class of classical systems, but that does not include all the problems of interest. Affine quantization has the benefit of providing a successful quantization of many important pr...Canonical quantization covers a broad class of classical systems, but that does not include all the problems of interest. Affine quantization has the benefit of providing a successful quantization of many important problems including the quantization of half-harmonic oscillators [1], non-renormalizable scalar fields, such as (<i>ϕ</i><sup>12</sup>)<sub>3</sub> [2] and (<i>ϕ</i><sup>12</sup>)<sub>3</sub> [3], as well as the quantum theory of Einstein’s general relativity [4]. The features that distinguish affine quantization are emphasized, especially, that affine quantization differs from canonical quantization only by the choice of classical variables promoted to quantum operators. Coherent states are used to ensure proper quantizations are physically correct. While quantization of non-renormalizable covariant scalars and gravity are difficult, we focus on appropriate ultralocal scalars and gravity that are fully soluble while, in that case, implying that affine quantization is the proper procedure to ensure the validity of affine quantizations for non-renormalizable covariant scalar fields and Einstein’s gravity.展开更多
The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical prop...The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.展开更多
In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of no...In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.展开更多
AD = 1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau–Klauder coherent states. It appears that their energy eigenvalues are scale...AD = 1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau–Klauder coherent states. It appears that their energy eigenvalues are scaled down by the quantum number and the nonlinearity coefficient. We study the basic properties of these states, which are found to be undefined on the whole complex plane, and some details of their revival structure are discussed.展开更多
In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam split...In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam splitters, pho- todetectors, cross-Kerr media, and phase shifters. And the success probability of the states preparation is calculated. At last we discuss the experimental feasibility of such proposal.展开更多
A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The c...A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The completeness of the k states is investigated.An alternative method to construct them is proposed.It is shown that these states may form a complete Hilbert space,and all of them can be generated by a linear superposition of k Roy-type nonlinear coherent states.Physically,they can be generated by a linear superposition of the time-dependent Roy-type nonlinear coherent states at different instants.展开更多
When two representations of the Lie algebra are coupled, the coupling integral kernels are presented to relate the coupled to uncoupled group-related coherent states. These kernels have a connection with usual couplin...When two representations of the Lie algebra are coupled, the coupling integral kernels are presented to relate the coupled to uncoupled group-related coherent states. These kernels have a connection with usual coupling coefficients. The explicit expressions of these kernels for and are given. When the direct product of three representations is formed in two ways, the recoupling integral kernels relating to the coupled group-related coherent states corresponding to two different schemes are introduced, and the relations between these kernels and the general recoupling coefficients are obtained. The properties of these kernels are discussed.展开更多
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory...A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations(corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed.An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank.展开更多
This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coh...This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.展开更多
The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,...The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.展开更多
Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first t...Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU(2) coherent states.展开更多
This paper presents a realistic scheme for the teleportation of coherent states in which a two-mode squeezed vacuum state serves as the quantum channel and the position-sum and momentum-difference of two local modes s...This paper presents a realistic scheme for the teleportation of coherent states in which a two-mode squeezed vacuum state serves as the quantum channel and the position-sum and momentum-difference of two local modes serve as the measuring observables. The average fidelity of the teleportation of coherent states is derived for finite squeezing parameters and it turns out that fidelity greater than 1/2 cannot be achieved by using a classical channel alone and the probability distribution of the measurement result is a Gaussian distribution around the unknown parameter of the input coherent state with a width given by the squeezing parameter.展开更多
Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on sque...Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on squeeze angle and squeeze parameter is discussed. It shows that the system evolves into entangled states and entanglement does not increase persistently with the increase of squeeze angle and squeeze parameter. There only exists a certain squeeze angle in which the entanglement exists continuously.展开更多
基金Collaborative Innovation Project of University,Anhui Province(Grant No.GXXT-2022-088).
文摘Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.
文摘In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator, after solving the corresponding Schrrdinger equation by using the factorization method. The obtained generalized raising and lowering operators naturally lead us to the Dirac representation space of the system which is much easier to work with, in comparison to the functional Hilbert space. The SU(1, 1) dynamical symmetry group associated with the considered system is exactly established through investigating the fact that the deduced operators satisfy appropriate commutation relations. This result enables us to construct two important and distinct classes of Barut-Girardello and Gilmore-Perelomov coherent states associated with the system. Finally, their identities as the most important task are exactly resolved and some of their nonclassical properties are illustrated, numerically.
基金Project supported by the National Basic Research Program of China(Grants Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61201239,61205118,11304397,and 61475148)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB01030100 and XDB01030300)
文摘Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.
文摘We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition. The scheme works in the strong-excitation regime, which is of experimental importance in view of decoherence.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10974039)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘This paper discusses some statistical properties of the superposition of two coherent states with a vacuum state, such as sub-Poissonian photon statistics and negativity of the Wigner function. Phase probability distribution and phase variance are calculated. Special cases of the constructed superposition states are presented. The results show that depending on the vacuum state coefficient γ and the coherent state coefficient a, it can generate a variety of nonclassical states.
基金supported by the National Natural Science Foundation of China (Grant Nos 10674038 and 10604042)National Basic Research Program of China (Grant No 2006CB302901)
文摘This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseudoclassical states. According to the analysis, it is found that the superposition state of two coherent states with their phase differences π/2 and 3π/2, and the superposition state of two pseudoclassical states both do exhibit the amplitude-squared squeezing. Also, some specific states are found to exhibit even stronger squeezing effects when relative phase of the superposition is equal to the average photon number. Amplitude-squared squeezing is dependent on the difference in phase between two coherent states.
基金The project supported by National Natural Science Foundation of China under Grant No. 10472040, Science Foundation of the Education Department of Liaoning Province under Grant No. 05L151
文摘Two new types of quantum states are constructed by applying the operator s(ξ) = exp(ξ* ab - ξa+b+) on the two-mode even and odd coherent states. The mathematical and quantum statistical properties of such states are investigated. Various nonclassical features of these states, such as squeezing properties, the inter-mode photon bunching, and the violation of Cauchy-Schwarz inequality, are discussed. The Wigner function in these states are studied in detail.
文摘Canonical quantization covers a broad class of classical systems, but that does not include all the problems of interest. Affine quantization has the benefit of providing a successful quantization of many important problems including the quantization of half-harmonic oscillators [1], non-renormalizable scalar fields, such as (<i>ϕ</i><sup>12</sup>)<sub>3</sub> [2] and (<i>ϕ</i><sup>12</sup>)<sub>3</sub> [3], as well as the quantum theory of Einstein’s general relativity [4]. The features that distinguish affine quantization are emphasized, especially, that affine quantization differs from canonical quantization only by the choice of classical variables promoted to quantum operators. Coherent states are used to ensure proper quantizations are physically correct. While quantization of non-renormalizable covariant scalars and gravity are difficult, we focus on appropriate ultralocal scalars and gravity that are fully soluble while, in that case, implying that affine quantization is the proper procedure to ensure the validity of affine quantizations for non-renormalizable covariant scalar fields and Einstein’s gravity.
文摘The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.
文摘In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.
文摘AD = 1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau–Klauder coherent states. It appears that their energy eigenvalues are scaled down by the quantum number and the nonlinearity coefficient. We study the basic properties of these states, which are found to be undefined on the whole complex plane, and some details of their revival structure are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10774108 and 11074184
文摘In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam splitters, pho- todetectors, cross-Kerr media, and phase shifters. And the success probability of the states preparation is calculated. At last we discuss the experimental feasibility of such proposal.
基金The project supported by National Natural Science Foundation of China under Grant No.10074072the Natural Science Foundation of Shandong Province of China under Grant No.Y2002A05
文摘A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The completeness of the k states is investigated.An alternative method to construct them is proposed.It is shown that these states may form a complete Hilbert space,and all of them can be generated by a linear superposition of k Roy-type nonlinear coherent states.Physically,they can be generated by a linear superposition of the time-dependent Roy-type nonlinear coherent states at different instants.
文摘When two representations of the Lie algebra are coupled, the coupling integral kernels are presented to relate the coupled to uncoupled group-related coherent states. These kernels have a connection with usual coupling coefficients. The explicit expressions of these kernels for and are given. When the direct product of three representations is formed in two ways, the recoupling integral kernels relating to the coupled group-related coherent states corresponding to two different schemes are introduced, and the relations between these kernels and the general recoupling coefficients are obtained. The properties of these kernels are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61272495,61379153,and 61401519)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130162110012)
文摘A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations(corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed.An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank.
文摘This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.
文摘The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.
文摘Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU(2) coherent states.
基金Project supported by the National Natural Science Foundation of China (Grant No 20477043).
文摘This paper presents a realistic scheme for the teleportation of coherent states in which a two-mode squeezed vacuum state serves as the quantum channel and the position-sum and momentum-difference of two local modes serve as the measuring observables. The average fidelity of the teleportation of coherent states is derived for finite squeezing parameters and it turns out that fidelity greater than 1/2 cannot be achieved by using a classical channel alone and the probability distribution of the measurement result is a Gaussian distribution around the unknown parameter of the input coherent state with a width given by the squeezing parameter.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on squeeze angle and squeeze parameter is discussed. It shows that the system evolves into entangled states and entanglement does not increase persistently with the increase of squeeze angle and squeeze parameter. There only exists a certain squeeze angle in which the entanglement exists continuously.