In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l1-norm, the Renyi a-relative entropy and the Tsallis a-relative entr...In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l1-norm, the Renyi a-relative entropy and the Tsallis a-relative entropy of coherence, respectively. The amplitude damping channel, phase damping channel, depolarizing channel, and flip channels axe analytically calculated. It shows that the decohering power of the amplitude damping channel on the x, y, and z basis is equal to each other. The same phenomenon can be seen for the phase damping channel and the flip channels. The cohering power for the phase damping channel and the flip channels on the x, y basis also equals to that on the z basis. However, the cohering and decohering power of the depolaxizing channel is independent to the reference basises. And the cohering power of the amplitude damping channel on the x, y basis is different to that on the z basis.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11271237,11671244the Higher School Doctoral Subject Foundation of Ministry of Education of China under Grant No.20130202110001the Central Universities under Grants Nos.2016TS060 and 2016CBY003
文摘In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l1-norm, the Renyi a-relative entropy and the Tsallis a-relative entropy of coherence, respectively. The amplitude damping channel, phase damping channel, depolarizing channel, and flip channels axe analytically calculated. It shows that the decohering power of the amplitude damping channel on the x, y, and z basis is equal to each other. The same phenomenon can be seen for the phase damping channel and the flip channels. The cohering power for the phase damping channel and the flip channels on the x, y basis also equals to that on the z basis. However, the cohering and decohering power of the depolaxizing channel is independent to the reference basises. And the cohering power of the amplitude damping channel on the x, y basis is different to that on the z basis.