Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping t...Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other ...A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.展开更多
Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 ...Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.展开更多
Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been...Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged el...A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.展开更多
Combining a Ti-diffusion periodically poled lithium niobate(PPLN)waveguide with a Sagnac interferometer,two opposite directions type-II spontaneous parametric down conversions(SPDC)occur coherently and yield a high br...Combining a Ti-diffusion periodically poled lithium niobate(PPLN)waveguide with a Sagnac interferometer,two opposite directions type-II spontaneous parametric down conversions(SPDC)occur coherently and yield a high brightness,high stability polarization entanglement source.The source produces degenerate photon pairs at 1540.4 nm with a brightness of B=(1.36±0.03)×10^(6) pairs/(s·nm·m W).We perform quantum state tomography to reconstruct the density matrix of the output state and obtain a fidelity of F=0.983±0.001.The high brightness and phase stability of our waveguide source enable a wide range of quantum information experiments operating at a low pump power as well as hold the advantage in mass production which can promote the practical applications of quantum technologies.展开更多
SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer u...SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer using asymmetric gain. Two vacuum states are used as the input and on–off detection is performed at the output. In a lossless scenario,symmetric gain is the optimal selection and the corresponding phase sensitivity can achieve the Heisenberg limit as well as the quantum Cramer–Rao bound. In addition, we analyze the phase sensitivity with symmetric gain in the lossy scenario.The phase sensitivity is sensitive to internal losses but extremely robust against external losses. We address the optimal asymmetric gain and the results suggest that this method can improve the tolerance to internal losses. Our work may contribute to the practical development of quantum metrology.展开更多
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young...A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.展开更多
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of sample...X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.展开更多
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW)...A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW), lower noise room temperature detector (noise tempera- ture below 6000 K) with good spatial resolution of 7 cm. Various parameters are optimized for maximum laser output power. Zero crossings of the signals are counted with field programmable gate array (FPGA) digital circuitry yielding the resolution of 1/1000 fringe. The newly measured results including density fluctuation are also presented.展开更多
This work presents an optical method using the Mach–Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The intere...This work presents an optical method using the Mach–Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr.The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone–Dale relation. The obtained results are in close agreement with values available in the literature.展开更多
A novel fiber optic moiréinterferometer has been developed and demonstrated.A He-Ne laser and three high birefringence fibers were used to configurate a fiber optic interferometer.The moiréfringe patterns fo...A novel fiber optic moiréinterferometer has been developed and demonstrated.A He-Ne laser and three high birefringence fibers were used to configurate a fiber optic interferometer.The moiréfringe patterns formed by the interferometer depend on the arrangement of three fiber ends.The experiment results and the intensity distribution function of the interference patterns are given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11174249 and 61475139)the Ministry of Science and Technology of China(Grant No.2011AA060504)+1 种基金the National Basic Research Program of China(Grant No.2013CB329501)the Fundamental Research Funds for the Central Universities,China(Grant No.2015FZA3002)
文摘Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金Project supported by the Shanxi Key Research and Development Project(Grant No.2019ZDLGY09-08)Shanxi Nature and Science Basic Research Project(Grant No.2019JLP-18).
文摘A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03020004,2018YFE0304102 and 2019YFE03020002)the Department of Science and Technology of Sichuan Province(No.2020YJ0463)。
文摘Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-7301-001228)the Major Special Science and Technology Project of Anhui Province(No.912188707023)。
文摘A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFF0712800 and 2019YFA0308700)。
文摘Combining a Ti-diffusion periodically poled lithium niobate(PPLN)waveguide with a Sagnac interferometer,two opposite directions type-II spontaneous parametric down conversions(SPDC)occur coherently and yield a high brightness,high stability polarization entanglement source.The source produces degenerate photon pairs at 1540.4 nm with a brightness of B=(1.36±0.03)×10^(6) pairs/(s·nm·m W).We perform quantum state tomography to reconstruct the density matrix of the output state and obtain a fidelity of F=0.983±0.001.The high brightness and phase stability of our waveguide source enable a wide range of quantum information experiments operating at a low pump power as well as hold the advantage in mass production which can promote the practical applications of quantum technologies.
基金Project supported by Leading Innovative Talents in Changzhou (Grant No.CQ20210107)Shuangchuang Ph.D Award (Grant No.JSSCBS20210915)+1 种基金Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No.21KJB140007)the National Natural Science Foundation of China (Grant No.12104193)。
文摘SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer using asymmetric gain. Two vacuum states are used as the input and on–off detection is performed at the output. In a lossless scenario,symmetric gain is the optimal selection and the corresponding phase sensitivity can achieve the Heisenberg limit as well as the quantum Cramer–Rao bound. In addition, we analyze the phase sensitivity with symmetric gain in the lossy scenario.The phase sensitivity is sensitive to internal losses but extremely robust against external losses. We address the optimal asymmetric gain and the results suggest that this method can improve the tolerance to internal losses. Our work may contribute to the practical development of quantum metrology.
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of ChinaChinese Academy of Sciences
文摘A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB825800)the Science Fund for Creative Research Groups,China(Grant No.11321503)+1 种基金the National Natural Science Foundation of China(Grant Nos.11179004,10979055,11205189,and 11205157)the Japan–Asia Youth Exchange Program in Science(SAKURA Exchange Program in Science)Administered by the Japan Science and Technology Agency
文摘X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金National Natural Science Foundation of China (Nos.10575030,10675043)the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW), lower noise room temperature detector (noise tempera- ture below 6000 K) with good spatial resolution of 7 cm. Various parameters are optimized for maximum laser output power. Zero crossings of the signals are counted with field programmable gate array (FPGA) digital circuitry yielding the resolution of 1/1000 fringe. The newly measured results including density fluctuation are also presented.
文摘This work presents an optical method using the Mach–Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr.The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone–Dale relation. The obtained results are in close agreement with values available in the literature.
文摘A novel fiber optic moiréinterferometer has been developed and demonstrated.A He-Ne laser and three high birefringence fibers were used to configurate a fiber optic interferometer.The moiréfringe patterns formed by the interferometer depend on the arrangement of three fiber ends.The experiment results and the intensity distribution function of the interference patterns are given.