The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov en...The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.展开更多
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact ...This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.展开更多
In this paper we prove the regularity, exponential stability of global solutions and existence of uniform compact attractors of semiprocesses, generated by the global solutions, of a two-parameter family of operators ...In this paper we prove the regularity, exponential stability of global solutions and existence of uniform compact attractors of semiprocesses, generated by the global solutions, of a two-parameter family of operators for a nonlinear onedimensional non-autonomous equation of viscoelasticity. We employ the properties of the analytic semigroup to show the compactness for the semiprocess generated by the global solutions.展开更多
基金Project supported by the National Natural Science Foundation of China(No.10771139)the Ph.D. Program of Ministry of Education of China(No.200802700002)+4 种基金the Shanghai Leading Academic Discipline Project(No.S30405)the Innovation Program of Shanghai Municipal Education Commission(No.08ZZ70)the Foundation of Shanghai Talented Persons(No.049)the Leading Academic Discipline Project of Shanghai Normal University(No.DZL707)the Foundation of Shanghai Normal University(No.DYL200803)
文摘The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.
基金the NNSFC(10771139 and 10771074)NSF of Wenzhou University(2007L024)NSF of Guangdong Province(004020077)
文摘This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.
文摘In this paper we prove the regularity, exponential stability of global solutions and existence of uniform compact attractors of semiprocesses, generated by the global solutions, of a two-parameter family of operators for a nonlinear onedimensional non-autonomous equation of viscoelasticity. We employ the properties of the analytic semigroup to show the compactness for the semiprocess generated by the global solutions.