期刊文献+
共找到1,765篇文章
< 1 2 89 >
每页显示 20 50 100
Effective forecast of Northeast Pacific sea surface temperature based on a complementary ensemble empirical mode decomposition–support vector machine method 被引量:1
1
作者 LI Qi-Jie ZHAO Ying +1 位作者 LIAO Hong-Lin LI Jia-Kang 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第3期261-267,共7页
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST... The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments. 展开更多
关键词 Sea surface temperature complementary ensemble empirical mode decomposition support vector machine PREDICTION
下载PDF
Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method 被引量:3
2
作者 Hong PAN Min-sheng BU 《Water Science and Engineering》 EI CAS CSCD 2014年第2期227-235,共9页
Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial... Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals. 展开更多
关键词 pressure fluctuation ensemble empirical mode decomposition intrinsic modefunction correlation coefficient
下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
3
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(EEMD) Complete EEMD with adaptive noise(ceemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
下载PDF
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
4
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales runoff
下载PDF
A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 被引量:1
5
作者 符懋敬 庄建军 +3 位作者 侯凤贞 展庆波 邵毅 宁新宝 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期592-601,共10页
In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th... In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. 展开更多
关键词 ensemble empirical mode decomposition gait series peak detection intrinsic mode functions
原文传递
Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model 被引量:1
6
作者 Lina Wang Yu Cao +2 位作者 Xilin Deng Huitao Liu Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期54-66,共13页
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev... As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions. 展开更多
关键词 significant wave height wave forecasting ensemble empirical mode decomposition(EEMD) Seq-to-Seq long short-term memory
下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
7
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction 被引量:1
8
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
9
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
下载PDF
基于ICEEMDAN算法的高速双圆弧斜齿轮泵振动试验特性分析
10
作者 董庆伟 李博 +2 位作者 李阁强 韩帅康 皇甫科维 《机床与液压》 北大核心 2025年第4期151-157,共7页
针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分... 针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分析。在此基础上,基于增强型完全集合经验模态分解(ICEEMDAN)算法对数据进行特征提取,通过模糊熵与峭度构建的综合指标选取内在模态函数分量(IMF)进行分析,得到双圆弧斜齿轮泵在不同转速和压力负载工况下的振动特性。结果表明:在所测工况下,出油口区域的振动幅度普遍高于进油口和泵体上侧区域,而且压力负载对泵的振动分布具有一定影响;在恒定压力负载下,泵的振动幅值随转速的提高而增加,且这种增长随转速的提高而加剧;在恒定转速下,泵的振动幅度整体趋势随着压力负载的增加而上升,但在特定压力负载点出现下降。 展开更多
关键词 斜齿轮泵 高速工况 振动特性 增强型完全集合经验模态分解(IceemdAN)算法
下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
11
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(ceemdAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
12
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列
下载PDF
基于改进CEEMDAN-FE-小波阈值的局部放电信号降噪算法
13
作者 蔡谦 钱勇 +2 位作者 赵九一 徐治仁 盛戈皞 《电气自动化》 2025年第2期58-62,共5页
电气设备局部放电信号的去噪对电气设备状态监测具有重要意义。提出了一种改进的自适应噪声完备集合经验模态分解-模糊熵-小波阈值的降噪方法。首先对局部放电信号进行自适应噪声完备集合经验模态分解;然后对分解后的各阶本征模态分量... 电气设备局部放电信号的去噪对电气设备状态监测具有重要意义。提出了一种改进的自适应噪声完备集合经验模态分解-模糊熵-小波阈值的降噪方法。首先对局部放电信号进行自适应噪声完备集合经验模态分解;然后对分解后的各阶本征模态分量求取模糊熵,将它们分为信号主导和噪声主导的分量,并对后者采用改进的小波阈值降噪;接着将信号重构,得到降噪后的信号;最后分别对仿真和实测的局放信号采用所提方法和其他降噪方法进行降噪处理和比较。结果表明:所提算法能够实现对白噪声和窄带干扰的抑制,指标信噪比和均方误差相较于其他降噪方法均更优。所提算法具有较好的降噪效果,为电力系统变压器绝缘状态的评估技术提供可行性。 展开更多
关键词 自适应噪声完备集合经验模态分解 模糊熵 改进小波阈值 局部放电 降噪
下载PDF
基于ICEEMDAN的微电网混合储能容量配置
14
作者 刘旭民 张彦 刘晓波 《南方电网技术》 北大核心 2025年第1期140-149,共10页
针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中... 针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中可再生能源出力和用电负荷波动导致的联络线功率波动问题。该方法通过对微电网中不平衡功率进行功率信号分解,并分析确定高频分量和低频分量,实现功率信号重构。针对不同储能系统技术特点,采用钠硫电池平抑低频分量,采用超级电容平抑高频分量。然后,通过建立以储能初始投资和维护成本最小为目标的HESS容量优化配置模型,利用商业求解器GUROBI求解混合储能配置方案。基于某并网型微电网进行算例分析,结果表明配置HESS能有效平抑微电网联络线功率波动,且该方法具有较好的经济性。算例分析结果验证了所提方法的有效性和可行性。 展开更多
关键词 改进自适应噪声完备集合经验模态分解(IceemdAN) 微电网 混合储能 容量优化配置 GUROBI
下载PDF
基于ICEEMDAN和SSA-LSTM组合模型的电离层TEC预测
15
作者 张振国 孙希延 +1 位作者 纪元法 贾茜子 《全球定位系统》 2025年第1期48-59,共12页
针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(impr... 针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(improved complete ensemble EMD with adaptive noise,ICEEMDAN)和样本熵(sample entropy,SE)算法的基础上,结合麻雀搜索算法(sparrow search algorithm,SSA)和LSTM构建电离层TEC组合预测模型,并对太阳活动低年平静期和太阳活动高年扰动期电离层TEC连续5 d的预测精度分析.实验结果表明,本文组合模型相较于单一LSTM模型和SSA-LSTM模型在低太阳活动平静期和高太阳活动扰动期的不同经纬度下,均方根误差(root mean square error,RMSE)分别最大降低1.06 TECU和2.25 TECU,平均绝对误差(mean absolute error,MAE)分别最大降低了0.74 TECU和1.68 TECU,平均相对精度分别最大提升了7.63%和8.97%,组合模型的预测效果要明显优于单一LSTM模型和SSA-LSTM模型. 展开更多
关键词 电离层 总电子含量(TEC)预测 改进的自适应噪声完备集合经验模态分解(IceemdAN) 样本熵(SE) 麻雀搜索算法(SSA) 长短期记忆神经网络(LSTM)
下载PDF
基于ICEEMDAN分解的SSVEP神经网络分类模型
16
作者 李晓明 郜东瑞 陈俊 《软件导刊》 2025年第4期48-55,共8页
稳态视觉诱发电位因其高信噪比和高信息传输速率,成为脑机接口最常用的控制信号之一。然而,目前基于深度学习的方法过度依赖于个别被试者的校准资料,在被试间的分类性能方面还存在较大改进空间。针对上述难题,结合改进的自适应噪声完备... 稳态视觉诱发电位因其高信噪比和高信息传输速率,成为脑机接口最常用的控制信号之一。然而,目前基于深度学习的方法过度依赖于个别被试者的校准资料,在被试间的分类性能方面还存在较大改进空间。针对上述难题,结合改进的自适应噪声完备集合经验模态分解、基于图卷积网络的空间特征提取器以及基于压缩激励的特征融合模块提出ICE-GSE算法。该算法利用改进的自适应噪声完备集合经验模态分解法将稳态视觉诱发电位信号分解成一组本征模态函数,有效降低了噪声和伪影的影响。空间特征提取器的邻接矩阵能充分表达脑电信号的空间位置关系,从而更好地学习空间域特征。为提升目标识别精度和算法鲁棒性,进一步引入特征融合模块,以便针对性选择与任务最相关的通道。在两个公开数据集上,时间窗口长度设置为0.5~1.0 s,对ICE-GSE与其他传统方法和深度学习方法进行全面比较。实验结果表明,在跨被试情况下,ICE-GSE的分类精度和信息传输速率相较对照方法更加优异,证明了其在分类任务中的可行性。 展开更多
关键词 稳态视觉诱发电位 脑机接口 自适应噪声完备集合经验模态分解 本征模态函数 图卷积 压缩激励
下载PDF
基于CEEMD-PF的甲烷气体直接吸收信号降噪研究
17
作者 孙思奇 李正友 +1 位作者 杨沅锦 杨炳雄 《激光杂志》 北大核心 2025年第2期62-72,共11页
为提高可调谐半导体激光器吸收光谱学(TDLAS)技术甲烷气体浓度的检测精度,解决检测过程中直接吸收信号的噪声干扰问题。提出了一种互补集合经验模态分解(CEEMD)结合排列熵和S-G滤波的降噪方法,通过排列熵和S-G滤波来解决CEEMD分解中出... 为提高可调谐半导体激光器吸收光谱学(TDLAS)技术甲烷气体浓度的检测精度,解决检测过程中直接吸收信号的噪声干扰问题。提出了一种互补集合经验模态分解(CEEMD)结合排列熵和S-G滤波的降噪方法,通过排列熵和S-G滤波来解决CEEMD分解中出现的虚假分量和噪声残留问题。通过仿真含不同噪声的甲烷气体吸收信号,并将所提方法与传统的CEEMD方法和小波变换方法作对比,验证所提方法的有效性。实验结果表明,相较于对比方法,所提方法吸收光谱曲线的Lorentz线型拟合的拟合度最高为0.991 1,吸收光谱幅值与甲烷气体浓度拟合度为0.998 46。该方法能够有效降低气体吸收信号中的噪声干扰,提高了系统的测量精度。 展开更多
关键词 TDLAS 直接吸收技术 互补集合经验模态分解 排列熵 S-G滤波
原文传递
强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断
18
作者 朱仁杰 宋恩哲 +1 位作者 姚崇 柯赟 《中国舰船研究》 北大核心 2025年第2期20-29,共10页
[目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电... [目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电机故障信号分解为多个本征模态函数(IMF)分量,并基于去趋势波动分析(DFA)划分IMF中噪声和信息的主导信号,对于噪声主导信号使用经验小波变化(EWT)予以降噪;然后,构建BRECAN网络,基于变分贝叶斯理论,使用网络参数代替传统网络点估计的训练方式,使用参数建模,拟合噪声对模型训练的干扰,并通过残差高效通道注意力(RECA)模块引导网络提取故障差异特征;最后,通过电机故障模拟实验台,验证所提方法的有效性。[结果]结果表明,所提方法在强噪声下能够实现船舶电机故障的精确诊断,在信噪比为-12dB的条件下仍能保持90%以上的诊断精度。[结论]研究成果可为强噪声下船舶电机故障诊断提供参考。 展开更多
关键词 电动机 故障分析 故障诊断 人工智能 完全集合经验模态分解(ceemdAN) 贝叶斯残差高效通道注意力网络(BRECAN)
下载PDF
基于MODWT-CEEMDAN-LSTM的短期光伏功率区间预测模型
19
作者 陈船宇 熊国江 +1 位作者 方厚康 罗颖勋 《太阳能学报》 北大核心 2025年第2期416-424,共9页
针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解... 针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解得到本征模态函数(IMF)分量;再将这些IMF分量分别输入进LSTM进行分量预测并将分量预测结果重构得到点预测结果;最后利用分位数回归对点预测结果进行建模后得到区间预测结果。实际算例表明,时频域分解方法与频域分解方法的结合,使得该模型在3种天气情况下的光伏功率点预测和区间预测均表现出优异的鲁棒性和准确性。 展开更多
关键词 光伏功率 预测 深度学习 长短期记忆 最大重叠小波变换 自适应噪声完备集合经验模态分解
原文传递
基于CEEMD-GWO的火-储协同调频混合储能优化配置策略
20
作者 乔馨 沙千理 +2 位作者 张鹏鑫 李永越 宋大彬 《吉林电力》 2025年第1期16-20,共5页
为解决火电机组在应对可再生能源并网时调频需求增加问题,提出了基于互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)与灰狼优化算法(Grey Wolf Optimizer,GWO)的火电-混合储能协同调频优化配置策略... 为解决火电机组在应对可再生能源并网时调频需求增加问题,提出了基于互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)与灰狼优化算法(Grey Wolf Optimizer,GWO)的火电-混合储能协同调频优化配置策略,以改善调频性能提高综合净收益。通过CEEMD将自动发电控制调频信号分解为高频和低频分量,分别由混合储能系统和火电机组响应;通过GWO对混合储能系统的功率和容量配置进行优化,综合考虑储能设备的全寿命周期成本及收益。结果表明,该策略有效地增强了调频性能,在满足调频需求的同时提高了综合经济效益。 展开更多
关键词 火电-混合储能联合 二次调频 配置策略 互补集合经验模态分解
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部