In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approa...In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approaches, this scheme only depends on each node's state output. So we need not to know the concrete network structure and the solutions of the isolate nodes of the network in advance. In order to demonstrate the effectiveness of the method, a special example is provided and numerical simulations are performed. The numerical results show that our control scheme is very effective and robust against the weak noise.展开更多
In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the...In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise.展开更多
We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks wi...We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.展开更多
In this paper, we investigate the locally and globally adaptive synchronization problem for an uncertain complex dynamical network with time-varying coupling delays based on the decentralized control. The coupling ter...In this paper, we investigate the locally and globally adaptive synchronization problem for an uncertain complex dynamical network with time-varying coupling delays based on the decentralized control. The coupling terms here are bounded by high-order polynomials with known gains that are ubiquitous in a large class of complex dynamical networks. We generalize the usual technology of searching for an appropriate coordinates transformation to change the network dynamics into a series of decoupled lower-dimensional systems. Several adaptive synchronization criteria are derived by constructing the Lyapunov-Krasovskii functional and Barbalat lemma, and the proposed criteria are simple in form and convenient for the practical engineering design. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed synchronization scheme.展开更多
This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this...This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors of all nodes in a fractional-order complex network converge to zero. This simple yet prac- tical scheme can be used in many networks such as small-world networks and scale-free networks. Unlike the existing methods which assume the coupling configuration among the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case, these assumptions are unnecessary, and the proposed adaptive strategy is more feasible. Two examples are presented to illustrate effectiveness of the proposed method.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown co...This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches.展开更多
In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the e...In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by addi...The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems.展开更多
In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-o...In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method.展开更多
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchro...In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont...This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.展开更多
A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical syn...A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility and effectiveness of the approach.展开更多
Fixed-time synchronization(FTS)of delayed memristor-based neural networks(MNNs)with discontinuous activations is studied in this paper.Both continuous and discontinuous activations are considered forMNNs.And the mixed...Fixed-time synchronization(FTS)of delayed memristor-based neural networks(MNNs)with discontinuous activations is studied in this paper.Both continuous and discontinuous activations are considered forMNNs.And the mixed delays which are closer to reality are taken into the system.Besides,two kinds of control schemes are proposed,including feedback and adaptive control strategies.Based on some lemmas,mathematical inequalities and the designed controllers,a few synchronization criteria are acquired.Moreover,the upper bound of settling time(ST)which is independent of the initial values is given.Finally,the feasibility of our theory is attested by simulation examples.展开更多
This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain par...This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.展开更多
Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in c...Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in complex dynamical networks with time delays in nodes, this paper attempts to use PD and PI control protocols to achieve synchronization. Based on a classical network model, we investigate the PD and PI control for synchronization of complex dynamical networks with delayed nodes and obtain some sufficient conditions. By using Lyapunov functions and appropriate state transformations, we prove that global synchronization can be achieved via the above control protocols. Finally, some simulation examples are illustrated to validate the effectiveness of the proposed theoretical results.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the ...In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the Lyapunov function method and mathematical analysis technique, a synchronization criterion with respect to the impulsive gains and intervals is analytically derived. From the criterion, the impulsive gains can adjust themselves to proper values when the impulsive intervals and some constants are fixed, and vice versa. Finally, two numerical examples are provided to verify the effectiveness of the derived result.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091, 10502042 and 10332030) Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655)
文摘In this paper, based on the invaxiance principle of differential equations, we propose a simple adaptive control method to synchronize the network with coupling of the general form. Comparing with other control approaches, this scheme only depends on each node's state output. So we need not to know the concrete network structure and the solutions of the isolate nodes of the network in advance. In order to demonstrate the effectiveness of the method, a special example is provided and numerical simulations are performed. The numerical results show that our control scheme is very effective and robust against the weak noise.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091, 10502042 and 10332030) and Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No Z200655).
文摘In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise.
基金the National Natural Science Foundation of China(Grant No.70871056)the Fundamental Research Funds for the Central Universities,China(Grant No.2013B10014)
文摘We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.
基金supported by the National Natural Science Foundation of China (No.60574013, 60874024)the Australian Research Council,and Dogus University Fund for Science
文摘In this paper, we investigate the locally and globally adaptive synchronization problem for an uncertain complex dynamical network with time-varying coupling delays based on the decentralized control. The coupling terms here are bounded by high-order polynomials with known gains that are ubiquitous in a large class of complex dynamical networks. We generalize the usual technology of searching for an appropriate coordinates transformation to change the network dynamics into a series of decoupled lower-dimensional systems. Several adaptive synchronization criteria are derived by constructing the Lyapunov-Krasovskii functional and Barbalat lemma, and the proposed criteria are simple in form and convenient for the practical engineering design. Numerical simulations illustrated by a nearest-neighbor coupling network verify the effectiveness of the proposed synchronization scheme.
基金Project supported by the National Natural Science Foundation of China(Nos.11672231 and11672233)the Natural Science Foundation of Shaanxi Province(No.2016JM1010)+1 种基金the Fundamental Research Funds for the Central Universities(No.3102017AX008)the Seed Foundation of Innovation and Creation for Graduate Students at the Northwestern Polytechnical University of China(No.Z2017187)
文摘This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors of all nodes in a fractional-order complex network converge to zero. This simple yet prac- tical scheme can be used in many networks such as small-world networks and scale-free networks. Unlike the existing methods which assume the coupling configuration among the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case, these assumptions are unnecessary, and the proposed adaptive strategy is more feasible. Two examples are presented to illustrate effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
文摘This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches.
文摘In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
文摘The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems.
文摘In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method.
基金Supported by National Natural Science Foundation of China under Grant No.61201227National Natural Science Foundation of China Guangdong Joint Fund under Grant No.U1201255+2 种基金the Natural Science Foundation of Anhui Province under Grant No.1208085MF93211 Innovation Team of Anhui University under Grant Nos.KJTD007A and KJTD001Bsupported by Chinese Scholarship Council
文摘In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金Project supported by the Funds for Creative Research Groups of China(Grant No.60821063)the National Basic Research Program of China(Grant No.2009CB320604)+2 种基金the National Natural Science Foundation of China(Grant No.60974043)the 111 Project(Grant No.B08015)the Science and Technology Research Project of the Educational Department of Liaoning Province of China(Grant No.2008S156)
文摘This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.
基金supported by Ph.D.Programs Foundation of Ministry of Education of China(Nos.JY0300137002 and20130203110021)Research Funds for the Central Universities(No.JB142001-6)
文摘A new approach of adaptive distributed control is proposed for a class of networks with unknown time-varying coupling weights. The proposed approach ensures that the complex dynamical networks achieve asymptotical synchronization and all the closed-loop signals are bounded. Furthermore, the coupling matrix is not assumed to be symmetric or irreducible and asymptotical synchronization can be achieved even when the graph of network is not connected. Finally, a simulation example shows the feasibility and effectiveness of the approach.
基金supported by National Natural Science Foundation of China under(Grant Nos.62173175,12026235,12026234,61903170,11805091,61877033,61833005)by 111 Project under Grant B17040+2 种基金by the Natural Science Foundation of Shandong Province under Grant Nos.ZR2019BF045,ZR2019MF021,ZR2019QF004by the Project of Shandong Province Higher Educational Science and Technology Program No.J18KA354by the Key Research and Development Project of Shandong Province of China,No.2019GGX101003.
文摘Fixed-time synchronization(FTS)of delayed memristor-based neural networks(MNNs)with discontinuous activations is studied in this paper.Both continuous and discontinuous activations are considered forMNNs.And the mixed delays which are closer to reality are taken into the system.Besides,two kinds of control schemes are proposed,including feedback and adaptive control strategies.Based on some lemmas,mathematical inequalities and the designed controllers,a few synchronization criteria are acquired.Moreover,the upper bound of settling time(ST)which is independent of the initial values is given.Finally,the feasibility of our theory is attested by simulation examples.
文摘This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0800401)the National Natural Science Foundation of China(Grant Nos.61621003,61532020,and61472027)the US Army Research Office(Grant No.W911NF-17-1-0535)
文摘Over the past two decades, synchronization, as an interesting collective behavior of complex dynamical networks, has been attracting much attention. To reveal and analyze the inherent mechanism of synchronization in complex dynamical networks with time delays in nodes, this paper attempts to use PD and PI control protocols to achieve synchronization. Based on a classical network model, we investigate the PD and PI control for synchronization of complex dynamical networks with delayed nodes and obtain some sufficient conditions. By using Lyapunov functions and appropriate state transformations, we prove that global synchronization can be achieved via the above control protocols. Finally, some simulation examples are illustrated to validate the effectiveness of the proposed theoretical results.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金Supported by the Tianyuan Special Funds of the NSFC under Grant No.11226242the Natural Science Foundation of Jiangxi Province of China under Grant Nos.20122BAB211006 and 20132BAB201016
文摘In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the Lyapunov function method and mathematical analysis technique, a synchronization criterion with respect to the impulsive gains and intervals is analytically derived. From the criterion, the impulsive gains can adjust themselves to proper values when the impulsive intervals and some constants are fixed, and vice versa. Finally, two numerical examples are provided to verify the effectiveness of the derived result.