In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps....In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.展开更多
A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Un...A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.展开更多
This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the fea...This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.展开更多
文摘In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)Scientific Research Project of Hezhou University(Grant Nos.2014YBZK06 and 2016HZXYSX03)
文摘This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.