A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the...A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vo1% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM)+methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.展开更多
The extrusion-based additive manufacturing (EAM) technique is recently being employed for rapid production of metals and ceramic components. This technique involves extruding the metal or ceramic material in solid pow...The extrusion-based additive manufacturing (EAM) technique is recently being employed for rapid production of metals and ceramic components. This technique involves extruding the metal or ceramic material in solid powder form mixed with a binder (i.e., an expendable viscous fluid), which is removed from the part after 3D printing. These technologies rely on the large design freedom allowed and the cost efficiency advantage over alternative metal additive manufacturing processes that are based on high energy beams, such as laser or electron beams. The EAM of metals and ceramics is not yet widespread, but published scientific and technical literature on it is rapidly growing. However, this literature is still less extensive than that on the fused deposition modeling (FDM) of plastics or the selective laser melting (SLM) of metals. This paper aims at filling this gap. FDM and powder injection molding are identified as preceding or enabling technologies for EAM. This paper systematically reviews all aspects of the feedstock EAM processes used for production of complex-shaped parts. The unique characteristics and advantages of these processes are also discussed with respect to materials and process steps. In addition, the key process parameters are explained to illustrate the suitability of the EAM process for diverse application domains.展开更多
A SIMO(single input and multiple output) system of a step-frequency(SF) radar is used.It works in downward-looking spotlight mode and moves within a 2D synthetic plane array.A 3D(three-dimensional) matrix of bistatic ...A SIMO(single input and multiple output) system of a step-frequency(SF) radar is used.It works in downward-looking spotlight mode and moves within a 2D synthetic plane array.A 3D(three-dimensional) matrix of bistatic scattering fields is produced in both the amplitude and phase from a 3D complex-shaped electric-large target above background surface.In numerical simulation,the bidirectional analytic ray tracing(BART) method is applied to calculate bistatic scattering in the SIMO observations from a volumetric target above background rough surface.An improved 3D RMA(range migration algorithm) is then utilized to make the imaging.Its 3D imaging is applied to reconstruct the target profile.As validation and comparison,the scattering fields of some simple targets are computed with comparisons of the BART and FEKO software.The SIMO techniques of imaging and reconstruction for a 3D target,such as a tank-like model over rough surface,are presented.展开更多
文摘A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vo1% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM)+methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.
文摘The extrusion-based additive manufacturing (EAM) technique is recently being employed for rapid production of metals and ceramic components. This technique involves extruding the metal or ceramic material in solid powder form mixed with a binder (i.e., an expendable viscous fluid), which is removed from the part after 3D printing. These technologies rely on the large design freedom allowed and the cost efficiency advantage over alternative metal additive manufacturing processes that are based on high energy beams, such as laser or electron beams. The EAM of metals and ceramics is not yet widespread, but published scientific and technical literature on it is rapidly growing. However, this literature is still less extensive than that on the fused deposition modeling (FDM) of plastics or the selective laser melting (SLM) of metals. This paper aims at filling this gap. FDM and powder injection molding are identified as preceding or enabling technologies for EAM. This paper systematically reviews all aspects of the feedstock EAM processes used for production of complex-shaped parts. The unique characteristics and advantages of these processes are also discussed with respect to materials and process steps. In addition, the key process parameters are explained to illustrate the suitability of the EAM process for diverse application domains.
基金supported by the National Natural Science of Foundation of China (Grant Nos. 60971091 and 41071219)
文摘A SIMO(single input and multiple output) system of a step-frequency(SF) radar is used.It works in downward-looking spotlight mode and moves within a 2D synthetic plane array.A 3D(three-dimensional) matrix of bistatic scattering fields is produced in both the amplitude and phase from a 3D complex-shaped electric-large target above background surface.In numerical simulation,the bidirectional analytic ray tracing(BART) method is applied to calculate bistatic scattering in the SIMO observations from a volumetric target above background rough surface.An improved 3D RMA(range migration algorithm) is then utilized to make the imaging.Its 3D imaging is applied to reconstruct the target profile.As validation and comparison,the scattering fields of some simple targets are computed with comparisons of the BART and FEKO software.The SIMO techniques of imaging and reconstruction for a 3D target,such as a tank-like model over rough surface,are presented.