Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
The application of μ theory in compliant force control system is studied. A compliant force control strategy is developed based on the inner loop position control of 6-DOF parallel robot in order to simulate the push...The application of μ theory in compliant force control system is studied. A compliant force control strategy is developed based on the inner loop position control of 6-DOF parallel robot in order to simulate the push and pull process of forcible alignment in space docking, Considering uncertainties such as parameter perturbations, model perturbations and external disturbances, etc., a robust force controller is designed using μ synthesis theory. The robust stability and robust performance are compared by analysis between the designed robust force controller and the classical force controller. The experiment results of the designed robust force controller and the classical force controller are shown. The results indicate that the designed robust force controller is of efficiency and superiority.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
文摘The application of μ theory in compliant force control system is studied. A compliant force control strategy is developed based on the inner loop position control of 6-DOF parallel robot in order to simulate the push and pull process of forcible alignment in space docking, Considering uncertainties such as parameter perturbations, model perturbations and external disturbances, etc., a robust force controller is designed using μ synthesis theory. The robust stability and robust performance are compared by analysis between the designed robust force controller and the classical force controller. The experiment results of the designed robust force controller and the classical force controller are shown. The results indicate that the designed robust force controller is of efficiency and superiority.