In order to improve the transmission rate of the compression system,a real-time video lossy compression system based on multiple ADV212 is proposed and achieved. Considering the CMOS video format and the working princ...In order to improve the transmission rate of the compression system,a real-time video lossy compression system based on multiple ADV212 is proposed and achieved. Considering the CMOS video format and the working principle of ADV212,a Custom-specific mode is used for various video formats firstly. The data can be cached through the FPGA internal RAM and SDRAM Ping-Pong operation. And the working efficiency is greatly promoted. Secondly,this method can realize direct code stream transmission or do it after storage. Through the error correcting coding,the correction ability of the flash memory is highly improved. Lastly,the compression and de-compression circuit boards are involved to specify the performance of the method. The results show that the compression system has a real-time and stable performance. And the compression ratio can be changed arbitrarily by configuring the program. The compression system can be realized and the real-time performance is good with large amount of data.展开更多
Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behavio...Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.展开更多
Since Pulse Code Modulation emerged in 1937, digitized speech has experienced rapid development due to its outstanding voice quality, reliability, robustness and security in communication. But how to reduce channel wi...Since Pulse Code Modulation emerged in 1937, digitized speech has experienced rapid development due to its outstanding voice quality, reliability, robustness and security in communication. But how to reduce channel width without loss of speech quality remains a crucial problem in speech coding theory. A new full-duplex digital speech communication system based on the Vocoder of AMBE-1000(TM) and microcontroller ATMEL 89C51 is introduced. It shows higher voice quality than current mobile phone system with only a quarter of channel width needed for the latter. The prospective areas in which the system can be applied include satellite communication, IP Phone, virtual meeting and the most important, defence industry.展开更多
We investigated respiratory tumor motion in lung stereotactic body radiotherapy (SBRT) with use of the “Air-Bag System”. 114 patients underwent four-dimensional (4D) computed tomography (CT) from October 2010 to Apr...We investigated respiratory tumor motion in lung stereotactic body radiotherapy (SBRT) with use of the “Air-Bag System”. 114 patients underwent four-dimensional (4D) computed tomography (CT) from October 2010 to April 2012. Gross tumor volume (GTV) was 8.1 ± 11.0 cc (range 0.3 - 77.5 cc). The tumor site was the upper and middle lobes in 62 cases, and lower lobe in 52 cases. The Air-Bag SystemTM consists of an inelastic air bag connected to a second smaller elastic air bag. The inelastic air bag is placed between the patient’s body surface and a HipFix and is secured by pressure adjustment via the elastic air bag. To assess respiratory tumor motion, the centroid of the tumor position is measured in the left-right, anterior-posterior, and caudal-cranial directions using the iPlan RT DoseTM treatment planning system. Respiratory tumor motion vector for patients with upper/middle and lower lobe tumors was 3.0 ± 2.2 mm (range, 0.4 - 11.7 mm) and 6.5 ± 4.6 mm (range, 0.4 - 22.0 mm) respectively, with this difference being significant (p < 0.05). Mean respiratory tumor motion for all patients was 0.9 ± 0.6 mm (range, 0.1 - 3.6 mm) in the left-right direction, 1.5 ± 1.1 mm (range, 0.1 - 5.7 mm) in the anterior-posterior direction, 4.1 ± 4.0 mm (range, 0.1 - 21.4 mm) in the caudal-cranial direction, and 4.7 ± 4.0 mm (range, 0.4 - 22.0 mm) overall. The Air-Bag System is expected to be provided an effective reduction in the motion of lung tumors.展开更多
Variable cycle engine(VCE)is one of the most promising technologies for the next-generation aircraft,the matching of different components in the compression system is a key difficulty VCE faced.To investigate the comp...Variable cycle engine(VCE)is one of the most promising technologies for the next-generation aircraft,the matching of different components in the compression system is a key difficulty VCE faced.To investigate the component matching mechanisms in the VCE compression system,an advanced throughflow program is employed to calculate the characteristic lines of each component,and a zero-dimensional method is developed to cap-ture the component performance deviation during the coupling working process.By setting the compressor stall and choke conditions as the boundary,the operation range of the compression system isfirst clarified,and the aerodynamic performance in the operation zone is discussed,thus providing a theoretical basis for optimization of the engine operating con-trol scheme.Results show that the efficiency of the coreflow is optimum at the left-bottom corner of the operation region,while the total pressure ratio peaks at the right-top area,hence a balance is needed when deciding the matching point.Regulations of component control pa-rameters will change the position of the operation zone,as well as the corresponding aerody-namic performance.Decreasing the core driven fan stage rotating speed can improve the total bypass ratio,yet the total pressure ratio of the coreflow will be decreased.Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly.The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed,both ways will decrease the total pressure ratio of the core flow.Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.展开更多
BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model ...BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model control.We designed a Tshaped magnet system to overcome these problems and verified its effectiveness via animal experiments.AIM To investigate the effectiveness of a T-shaped magnet system for establishing a TEF model in beagle dogs.METHODS Twelve beagles were randomly assigned to groups in which magnets of the Tshaped scheme(study group,n=6)or normal magnets(control group,n=6)were implanted into the trachea and esophagus separately under gastroscopy.Operation time,operation success rate,and accidental injury were recorded.After operation,the presence and timing of cough and the time of magnet shedding were observed.Dogs in the control group were euthanized after X-ray and gastroscopy to confirm establishment of TEFs after coughing,and gross specimens of TEFs were obtained.Dogs in the study group were euthanized after X-ray and gastroscopy 2 wk after surgery,and gross specimens were obtained.Fistula size was measured in all animals,and then harvested fistula specimens were examined by hematoxylin and eosin(HE)and Masson trichrome staining.RESULTS The operation success rate was 100%for both groups.Operation time did not differ between the study group(5.25 min±1.29 min)and the control group(4.75 min±1.70 min;P=0.331).No bleeding,perforation,or unplanned magnet attraction occurred in any animal during the operation.In the early postoperative period,all dogs ate freely and were generally in good condition.Dogs in the control group had severe cough after drinking water at 6-9 d after surgery.X-ray indicated that the magnets had entered the stomach,and gastroscopy showed TEF formation.Gross specimens of TEFs from the control group showed the formation of fistulas with a diameter of 4.94 mm±1.29 mm(range,3.52-6.56 mm).HE and Masson trichrome staining showed scar tissue formation and hierarchical structural disorder at the fistulas.Dogs in the study group did not exhibit obvious coughing after surgery.X-ray examination 2 wk after surgery indicated fixed magnet positioning,and gastroscopy showed no change in magnet positioning.The magnets were removed using a snare under endoscopy,and TEF was observed.Gross specimens showed well-formed fistulas with a diameter of 6.11 mm±0.16 mm(range,5.92-6.36 mm),which exceeded that in the control group(P<0.001).Scar formation was observed on the internal surface of fistulas by HE and Masson trichrome staining,and the structure was more regular than that in the control group.CONCLUSION Use of the modified T-shaped magnet scheme is safe and feasible for establishing TEF and can achieve a more stable and uniform fistula size compared with ordinary magnets.Most importantly,this model offers better controllability,which improves the flexibility of follow-up studies.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
Purpose In the research of the microwave pulse compression,it was found that a new physical model has a high power gain for the rectangular TE1,0,20 resonant mode at 2.920 GHz in S-band than the traditional physical m...Purpose In the research of the microwave pulse compression,it was found that a new physical model has a high power gain for the rectangular TE1,0,20 resonant mode at 2.920 GHz in S-band than the traditional physical model.In this report,the model structure,physical principle,simulation results,and theoretical analysis will be given in detail.Methods In the new physical model of microwave pulse compression system,(1)the technologies of the over-moded resonant cavity and over-sized output waveguide were used together first time for the rectangular TE1,0,20 resonant mode at 2.920 GHz in S-band,in order to improve the Q-value of the microwave resonant cavity and increase the power gain of the output pulse;(2)optimize the dimensions of the coupling window to get the maximum efficiency of the energy storage in the resonant cavity.Results From the latest research,it was shown that,in the optimal resonant state,(1)the power gain of the system can reach up to 276.97.Relative the traditional physical model,the power gain increased by 53.40%;(2)in the optimal resonant state,the energy storage efficiency of the over-moded system has also reached up to 88.91%.Relative to the traditional physical model,the efficiency increased by 23.33%;(3)another important result is that the power gain is very sensitive to the deviations of the resonant cavity length and output waveguide position from their optimal values.For example,the power gain will decrease by 61.45 or 67.17%,if the length deviation of the resonant cavity is−0.10 mm or+0.10 mm.It is very important to the theoretical and experimental studies.Conclusion It was shown that the new physical model of microwave pulse compression system has a higher power gain than the traditional physical model,by using the over-moded technology to the resonant cavity and output waveguide.Because of the universality of this high-gain over-moded physical model,the high-gain over-moded technology can be applied directly to X,Ku,and Ka bands.展开更多
Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refri...Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.展开更多
The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system...The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system,a multi-dimensional analysis method is developed,through which the coupling mechanism between the compressor component and the bypass is examined.The operation zones of the compressor components and the bypass system are proposed,and the operation range of the compression system is obtained by calculating the overlapping part of the operation zones.The results show that in the double bypass mode,there exists a minimum mode selector valve area and a minimum core driven fan stage stall margin that ensures a feasible bypass flow,the two parameters correspond to each other.Under the given fan and core driven fan stage conditions,the maximum value of the inner bypass ratio is restricted by the upper limit of the forward variable area bypass injector and the maximum Mach number in the total bypass,while the minimum value of the inner bypass ratio depends on the lower limit of the forward variable area bypass injector geometry and the system recirculation margin.The single bypass mode is a unique condition of the double bypass mode,as the operation zone of the compressor component degenerates from a two-dimensional surface to a straight line.There are multiple bypass states available in the single bypass mode,while the regulation range of the bypass ratio is jointly restricted by the operation range of the high pressure compressor and the aerodynamic boundary of the forward variable area bypass injector.展开更多
Compressed air energy storage(CAES)is an important technology in the development of renewable energy.The main advantages of CAES are its high energy capacity and environmental friendliness.One of the main challenges i...Compressed air energy storage(CAES)is an important technology in the development of renewable energy.The main advantages of CAES are its high energy capacity and environmental friendliness.One of the main challenges is its low energy density,meaning a natural cavern is required for air storage.High-pressure air compression can effectively solve the problem.A liquid piston gas compressor facilitates high-pressure compression,and efficient convective heat transfer can significantly reduce the compression energy consumption during air compression.In this paper,a near isothermal compression method is proposed to increase the surface area and heat exchange by using multiple tube bundles in parallel in the compression chamber in order to obtain high-pressure air using liquid-driven compression.Air compression with a compression ratio of 6.25:1 is achieved by reducing the tube diameter and increasing the parallel tube number while keeping the compression chamber cross-sectional area constant in order to obtain a high-pressure air of 5 MPa.The performances of this system are analyzed when different numbers of tubes are applied.A system compression efficiency of 93.0%and an expansion efficiency of 92.9%can be achieved when 1000 tubes are applied at a 1 minute period.A new approach is provided in this study to achieve high efficiency and high pressure compressed air energy storage.展开更多
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o...Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.展开更多
Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynami...Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.展开更多
Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance...Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance referenced by multiple duplicates.Delta compression is usually regarded as a complementary technique to deduplication to further remove the redundancy of similar blocks,but our observations indicate that this is disobedient when data have sparse duplicate blocks.In addition,there are many overlapped deltas in the resemblance detection process of post-deduplication delta compression,which hinders the efficiency of delta compression and the index phase of resemblance detection inquires abundant non-similar blocks,resulting in inefficient system throughput.Therefore,a multi-feature-based redundancy elimination scheme,called MFRE,is proposed to solve these problems.The similarity feature and temporal locality feature are excavated to assist redundancy elimination where the similarity feature well expresses the duplicate attribute.Then,similarity-based dynamic post-deduplication delta compression and temporal locality-based dynamic delta compression discover more similar base blocks to minimise overlapped deltas and improve compression ratios.Moreover,the clustering method based on block-relationship and the feature index strategy based on bloom filters reduce IO overheads and improve system throughput.Experiments demonstrate that the proposed method,compared to the state-of-the-art method,improves the compression ratio and system throughput by 9.68%and 50%,respectively.展开更多
Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly devel...Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.展开更多
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0...Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering.展开更多
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In...The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.展开更多
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S...In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.展开更多
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w...Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.863-2-5-1-13B)
文摘In order to improve the transmission rate of the compression system,a real-time video lossy compression system based on multiple ADV212 is proposed and achieved. Considering the CMOS video format and the working principle of ADV212,a Custom-specific mode is used for various video formats firstly. The data can be cached through the FPGA internal RAM and SDRAM Ping-Pong operation. And the working efficiency is greatly promoted. Secondly,this method can realize direct code stream transmission or do it after storage. Through the error correcting coding,the correction ability of the flash memory is highly improved. Lastly,the compression and de-compression circuit boards are involved to specify the performance of the method. The results show that the compression system has a real-time and stable performance. And the compression ratio can be changed arbitrarily by configuring the program. The compression system can be realized and the real-time performance is good with large amount of data.
文摘Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.
文摘Since Pulse Code Modulation emerged in 1937, digitized speech has experienced rapid development due to its outstanding voice quality, reliability, robustness and security in communication. But how to reduce channel width without loss of speech quality remains a crucial problem in speech coding theory. A new full-duplex digital speech communication system based on the Vocoder of AMBE-1000(TM) and microcontroller ATMEL 89C51 is introduced. It shows higher voice quality than current mobile phone system with only a quarter of channel width needed for the latter. The prospective areas in which the system can be applied include satellite communication, IP Phone, virtual meeting and the most important, defence industry.
文摘We investigated respiratory tumor motion in lung stereotactic body radiotherapy (SBRT) with use of the “Air-Bag System”. 114 patients underwent four-dimensional (4D) computed tomography (CT) from October 2010 to April 2012. Gross tumor volume (GTV) was 8.1 ± 11.0 cc (range 0.3 - 77.5 cc). The tumor site was the upper and middle lobes in 62 cases, and lower lobe in 52 cases. The Air-Bag SystemTM consists of an inelastic air bag connected to a second smaller elastic air bag. The inelastic air bag is placed between the patient’s body surface and a HipFix and is secured by pressure adjustment via the elastic air bag. To assess respiratory tumor motion, the centroid of the tumor position is measured in the left-right, anterior-posterior, and caudal-cranial directions using the iPlan RT DoseTM treatment planning system. Respiratory tumor motion vector for patients with upper/middle and lower lobe tumors was 3.0 ± 2.2 mm (range, 0.4 - 11.7 mm) and 6.5 ± 4.6 mm (range, 0.4 - 22.0 mm) respectively, with this difference being significant (p < 0.05). Mean respiratory tumor motion for all patients was 0.9 ± 0.6 mm (range, 0.1 - 3.6 mm) in the left-right direction, 1.5 ± 1.1 mm (range, 0.1 - 5.7 mm) in the anterior-posterior direction, 4.1 ± 4.0 mm (range, 0.1 - 21.4 mm) in the caudal-cranial direction, and 4.7 ± 4.0 mm (range, 0.4 - 22.0 mm) overall. The Air-Bag System is expected to be provided an effective reduction in the motion of lung tumors.
基金supports of National Natural Science Foundation of China (No.52206038)National Science and Technology Major Project,China (No.Y2022-II-0003-0006)Science Center for Gas Turbine Project (Nos.P2022-B-II-002-001,P2022-A-II-001-001).
文摘Variable cycle engine(VCE)is one of the most promising technologies for the next-generation aircraft,the matching of different components in the compression system is a key difficulty VCE faced.To investigate the component matching mechanisms in the VCE compression system,an advanced throughflow program is employed to calculate the characteristic lines of each component,and a zero-dimensional method is developed to cap-ture the component performance deviation during the coupling working process.By setting the compressor stall and choke conditions as the boundary,the operation range of the compression system isfirst clarified,and the aerodynamic performance in the operation zone is discussed,thus providing a theoretical basis for optimization of the engine operating con-trol scheme.Results show that the efficiency of the coreflow is optimum at the left-bottom corner of the operation region,while the total pressure ratio peaks at the right-top area,hence a balance is needed when deciding the matching point.Regulations of component control pa-rameters will change the position of the operation zone,as well as the corresponding aerody-namic performance.Decreasing the core driven fan stage rotating speed can improve the total bypass ratio,yet the total pressure ratio of the coreflow will be decreased.Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly.The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed,both ways will decrease the total pressure ratio of the core flow.Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.
基金Supported by the Key Research&Development Program of Shaanxi Province of China,No.2024SF-YBXM-447Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07+1 种基金Fundamental Research Funds for the Central Universities,No.xzy022023068Natural Science Foundation of Shaanxi Province,No.2023-JC-QN-0814.
文摘BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model control.We designed a Tshaped magnet system to overcome these problems and verified its effectiveness via animal experiments.AIM To investigate the effectiveness of a T-shaped magnet system for establishing a TEF model in beagle dogs.METHODS Twelve beagles were randomly assigned to groups in which magnets of the Tshaped scheme(study group,n=6)or normal magnets(control group,n=6)were implanted into the trachea and esophagus separately under gastroscopy.Operation time,operation success rate,and accidental injury were recorded.After operation,the presence and timing of cough and the time of magnet shedding were observed.Dogs in the control group were euthanized after X-ray and gastroscopy to confirm establishment of TEFs after coughing,and gross specimens of TEFs were obtained.Dogs in the study group were euthanized after X-ray and gastroscopy 2 wk after surgery,and gross specimens were obtained.Fistula size was measured in all animals,and then harvested fistula specimens were examined by hematoxylin and eosin(HE)and Masson trichrome staining.RESULTS The operation success rate was 100%for both groups.Operation time did not differ between the study group(5.25 min±1.29 min)and the control group(4.75 min±1.70 min;P=0.331).No bleeding,perforation,or unplanned magnet attraction occurred in any animal during the operation.In the early postoperative period,all dogs ate freely and were generally in good condition.Dogs in the control group had severe cough after drinking water at 6-9 d after surgery.X-ray indicated that the magnets had entered the stomach,and gastroscopy showed TEF formation.Gross specimens of TEFs from the control group showed the formation of fistulas with a diameter of 4.94 mm±1.29 mm(range,3.52-6.56 mm).HE and Masson trichrome staining showed scar tissue formation and hierarchical structural disorder at the fistulas.Dogs in the study group did not exhibit obvious coughing after surgery.X-ray examination 2 wk after surgery indicated fixed magnet positioning,and gastroscopy showed no change in magnet positioning.The magnets were removed using a snare under endoscopy,and TEF was observed.Gross specimens showed well-formed fistulas with a diameter of 6.11 mm±0.16 mm(range,5.92-6.36 mm),which exceeded that in the control group(P<0.001).Scar formation was observed on the internal surface of fistulas by HE and Masson trichrome staining,and the structure was more regular than that in the control group.CONCLUSION Use of the modified T-shaped magnet scheme is safe and feasible for establishing TEF and can achieve a more stable and uniform fistula size compared with ordinary magnets.Most importantly,this model offers better controllability,which improves the flexibility of follow-up studies.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金Supported by National Natural Science Foundation of China(Grand No.:10475081).
文摘Purpose In the research of the microwave pulse compression,it was found that a new physical model has a high power gain for the rectangular TE1,0,20 resonant mode at 2.920 GHz in S-band than the traditional physical model.In this report,the model structure,physical principle,simulation results,and theoretical analysis will be given in detail.Methods In the new physical model of microwave pulse compression system,(1)the technologies of the over-moded resonant cavity and over-sized output waveguide were used together first time for the rectangular TE1,0,20 resonant mode at 2.920 GHz in S-band,in order to improve the Q-value of the microwave resonant cavity and increase the power gain of the output pulse;(2)optimize the dimensions of the coupling window to get the maximum efficiency of the energy storage in the resonant cavity.Results From the latest research,it was shown that,in the optimal resonant state,(1)the power gain of the system can reach up to 276.97.Relative the traditional physical model,the power gain increased by 53.40%;(2)in the optimal resonant state,the energy storage efficiency of the over-moded system has also reached up to 88.91%.Relative to the traditional physical model,the efficiency increased by 23.33%;(3)another important result is that the power gain is very sensitive to the deviations of the resonant cavity length and output waveguide position from their optimal values.For example,the power gain will decrease by 61.45 or 67.17%,if the length deviation of the resonant cavity is−0.10 mm or+0.10 mm.It is very important to the theoretical and experimental studies.Conclusion It was shown that the new physical model of microwave pulse compression system has a higher power gain than the traditional physical model,by using the over-moded technology to the resonant cavity and output waveguide.Because of the universality of this high-gain over-moded physical model,the high-gain over-moded technology can be applied directly to X,Ku,and Ka bands.
文摘Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.
基金co-supported by the National Natural Science Foundation of China(No.52206038)the National Science and Technology Major Project,China(No.Y2022-Ⅱ-0003)the Science Center for Gas Turbine Project,China(Nos.P2022-A-Ⅱ-001-001 and P2022-B-Ⅱ-002-001).
文摘The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system,a multi-dimensional analysis method is developed,through which the coupling mechanism between the compressor component and the bypass is examined.The operation zones of the compressor components and the bypass system are proposed,and the operation range of the compression system is obtained by calculating the overlapping part of the operation zones.The results show that in the double bypass mode,there exists a minimum mode selector valve area and a minimum core driven fan stage stall margin that ensures a feasible bypass flow,the two parameters correspond to each other.Under the given fan and core driven fan stage conditions,the maximum value of the inner bypass ratio is restricted by the upper limit of the forward variable area bypass injector and the maximum Mach number in the total bypass,while the minimum value of the inner bypass ratio depends on the lower limit of the forward variable area bypass injector geometry and the system recirculation margin.The single bypass mode is a unique condition of the double bypass mode,as the operation zone of the compressor component degenerates from a two-dimensional surface to a straight line.There are multiple bypass states available in the single bypass mode,while the regulation range of the bypass ratio is jointly restricted by the operation range of the high pressure compressor and the aerodynamic boundary of the forward variable area bypass injector.
文摘Compressed air energy storage(CAES)is an important technology in the development of renewable energy.The main advantages of CAES are its high energy capacity and environmental friendliness.One of the main challenges is its low energy density,meaning a natural cavern is required for air storage.High-pressure air compression can effectively solve the problem.A liquid piston gas compressor facilitates high-pressure compression,and efficient convective heat transfer can significantly reduce the compression energy consumption during air compression.In this paper,a near isothermal compression method is proposed to increase the surface area and heat exchange by using multiple tube bundles in parallel in the compression chamber in order to obtain high-pressure air using liquid-driven compression.Air compression with a compression ratio of 6.25:1 is achieved by reducing the tube diameter and increasing the parallel tube number while keeping the compression chamber cross-sectional area constant in order to obtain a high-pressure air of 5 MPa.The performances of this system are analyzed when different numbers of tubes are applied.A system compression efficiency of 93.0%and an expansion efficiency of 92.9%can be achieved when 1000 tubes are applied at a 1 minute period.A new approach is provided in this study to achieve high efficiency and high pressure compressed air energy storage.
基金financially supported by the National Natural Science Foundation of China(Nos.52130404 and 52304121)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-112A1)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A 1515110161)the ANID(Chile)through Fondecyt project 1210610the Centro de Modelamiento Matemático(BASAL funds for Centers of Excellence FB210005)the CRHIAM project ANID/FONDAP/15130015 and ANID/FONDAP/1523A0001the Anillo project ANID/ACT210030。
文摘Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.
基金supported in part by the Stable Support Research Project of AECC Sichuan Gas Turbine Establishment,China(No.GJCZ-0013-19)the Open Foundation of State Key Laboratory of Compressor Technology,China(Compressor Technology Laboratory of Anhui Province)(No.SKL-YSJ2020007).
文摘Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.
基金National Key R&D Program of China,Grant/Award Number:2018AAA0102100National Natural Science Foundation of China,Grant/Award Numbers:62177047,U22A2034+6 种基金International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province,Grant/Award Number:2021CB1013Key Research and Development Program of Hunan Province,Grant/Award Number:2022SK2054111 Project,Grant/Award Number:B18059Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ30762Fundamental Research Funds for the Central Universities of Central South University,Grant/Award Number:2020zzts143Scientific and Technological Innovation Leading Plan of High‐tech Industry of Hunan Province,Grant/Award Number:2020GK2021Central South University Research Program of Advanced Interdisciplinary Studies,Grant/Award Number:2023QYJC020。
文摘Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance referenced by multiple duplicates.Delta compression is usually regarded as a complementary technique to deduplication to further remove the redundancy of similar blocks,but our observations indicate that this is disobedient when data have sparse duplicate blocks.In addition,there are many overlapped deltas in the resemblance detection process of post-deduplication delta compression,which hinders the efficiency of delta compression and the index phase of resemblance detection inquires abundant non-similar blocks,resulting in inefficient system throughput.Therefore,a multi-feature-based redundancy elimination scheme,called MFRE,is proposed to solve these problems.The similarity feature and temporal locality feature are excavated to assist redundancy elimination where the similarity feature well expresses the duplicate attribute.Then,similarity-based dynamic post-deduplication delta compression and temporal locality-based dynamic delta compression discover more similar base blocks to minimise overlapped deltas and improve compression ratios.Moreover,the clustering method based on block-relationship and the feature index strategy based on bloom filters reduce IO overheads and improve system throughput.Experiments demonstrate that the proposed method,compared to the state-of-the-art method,improves the compression ratio and system throughput by 9.68%and 50%,respectively.
文摘Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.
基金Projects(52074299,41941018)supported by the National Natural Science Foundation of ChinaProject(2023JCCXSB02)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering.
基金Project supported by the National Natural Science Foundation of China (Grant No.12272118)the National Key Research and Development Program of China (Grant No.2022YFE03030003)。
文摘The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
基金Project(2021YFC2900600)supported by the Young Scientist Project of National Key Research and Development Program of ChinaProject(52074166)supported by the National Natural Science Foundation of China+1 种基金Projects(ZR2021YQ38,ZR2020QE121)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022KJ101)supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province,China。
文摘In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.
基金via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444).
文摘Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.