期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Parallel Inference for Real-Time Machine Learning Applications
1
作者 Sultan Al Bayyat Ammar Alomran +3 位作者 Mohsen Alshatti Ahmed Almousa Rayyan Almousa Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期139-146,共8页
Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes... Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes the performance gains from parallel versus sequential hyperparameter optimization. Using scikit-learn’s Randomized SearchCV, this project tuned a Random Forest classifier for fake news detection via randomized grid search. Setting n_jobs to -1 enabled full parallelization across CPU cores. Results show the parallel implementation achieved over 5× faster CPU times and 3× faster total run times compared to sequential tuning. However, test accuracy slightly dropped from 99.26% sequentially to 99.15% with parallelism, indicating a trade-off between evaluation efficiency and model performance. Still, the significant computational gains allow more extensive hyperparameter exploration within reasonable timeframes, outweighing the small accuracy decrease. Further analysis could better quantify this trade-off across different models, tuning techniques, tasks, and hardware. 展开更多
关键词 Machine Learning Models computational efficiency Parallel Computing Systems Random Forest Inference Hyperparameter Tuning Python Frameworks (TensorFlow PyTorch Scikit-Learn) High-Performance Computing
下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network
2
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
下载PDF
Bubble size modeling approach for the simulation of bubble columns
3
作者 Xibao Zhang Zhenghong Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期194-200,共7页
The constant bubble size modeling approach(CBSM)and variable bubble size modeling approach(VBSM)are frequently employed in Eulerian–Eulerian simulation of bubble columns.However,the accuracy of CBSM is limited while ... The constant bubble size modeling approach(CBSM)and variable bubble size modeling approach(VBSM)are frequently employed in Eulerian–Eulerian simulation of bubble columns.However,the accuracy of CBSM is limited while the computational efficiency of VBSM needs to be improved.This work aims to develop method for bubble size modeling which has high computational efficiency and accuracy in the simulation of bubble columns.The distribution of bubble sizes is represented by a series of discrete points,and the percentage of bubbles with various sizes at gas inlet is determined by the results of computational fluid dynamics(CFD)–population balance model(PBM)simulations,whereas the influence of bubble coalescence and breakup is neglected.The simulated results of a 0.15 m diameter bubble column suggest that the developed method has high computational speed and can achieve similar accuracy as CFD–PBM modeling.Furthermore,the convergence issues caused by solving population balance equations are addressed. 展开更多
关键词 Bubble column Bubble size modeling Numerical simulation Population balance equations computational efficiency
下载PDF
A High-Accuracy Single Patch Representation of Multi-Patch Geometries with Applications to Isogeometric Analysis 被引量:2
4
作者 Jinlan Xu Ningning Sun Gang Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期627-642,共16页
This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications.In isogeometric analysis,mult... This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications.In isogeometric analysis,multi-patch structure is not easy to achieve high continuity between neighboring patches which will reduce the advantage of isogeometric analysis in a sense.The proposed method can achieve high continuity at surface stitching region with low geometric error,and this technique exploits constructing the approximate surface with several control points are from original surfaces,which guarantees the local feature of the surface can be well-preserved with high precision.With the proposed approximating method,isogeometric analysis results using the new single-patch can be obtained efficiently compared with the original multi-patch structure.Several examples are presented to illustrate the effectiveness,accuracy and efficiency of the proposed method. 展开更多
关键词 Isogeometric analysis patch merging multi-patch structure computational efficiency
下载PDF
Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
5
作者 Daosheng XU Dehui CHEN Kaixin WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期615-626,共12页
Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, th... Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, the properties of high-order finite difference schemes are studied based on idealized numerical testing, for the purpose of their application in the Global/Regional Assimilation and Prediction System(GRAPES) model. It is found that the pros and cons due to grid staggering choices diminish with higher-order schemes based on linearized analysis of the one-dimensional gravity wave equation. The improvement of higher-order difference schemes is still obvious for the mesh with smooth varied grid distance. The results of discontinuous square wave testing also exhibits the superiority of high-order schemes. For a model grid with severe non-uniformity and non-orthogonality, the advantage of high-order difference schemes is inapparent, as shown by the results of two-dimensional idealized advection tests under a terrain-following coordinate. In addition, the increase in computational expense caused by high-order schemes can be avoided by the precondition technique used in the GRAPES model. In general, a high-order finite difference scheme is a preferable choice for the tropical regional GRAPES model with a quasi-uniform and quasi-orthogonal grid mesh. 展开更多
关键词 high-order difference scheme DISPERSION UNIFORM ORTHOGONAL computational efficiency
下载PDF
Adjoint Method-Based Algorithm for Calculating the Relative Dispersion Ratio in a Hydrodynamic System
6
作者 JI Fei JIANG Wensheng GUO Xinyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第4期790-802,共13页
Relative dispersion ratio(RDR)can be used to quantify the deviation behavior of a water parcel’s trajectory caused by a disturbance in a hydrodynamic system.It can be calculated by using a standard method for determi... Relative dispersion ratio(RDR)can be used to quantify the deviation behavior of a water parcel’s trajectory caused by a disturbance in a hydrodynamic system.It can be calculated by using a standard method for determining relative dispersion(RD),which accounts for the growth of the deviation of a cluster of particles from a specific initial time.However,the standard method for computing RD is time consuming.It involves numerous computations on tracing many water parcels.In this study,a new method based on the adjoint method is proposed to acquire a series of RDR fields in one round of tracing.Through this method,the continuous variation in the RDR corresponding to a time series of the disturbance time t can be obtained.The consistency and efficiency of the new method are compared with those of the standard method by applying it to a double-gyre flow and an unsteady Arnold-Beltrami-Childress flow field.Results show that the two methods have good consistency in a finite time span.The new method has a notable speedup for evaluating the RDR at multiple t. 展开更多
关键词 relative dispersion particle tracking adjoint method computational efficiency
下载PDF
Constitutive modeling of ultra?fine?grained titanium flow stress for machining temperature prediction
7
作者 Jinqiang Ning Vinh Nguyen +2 位作者 Yong Huang Karl T.Hartwig Steven Y.Liang 《Bio-Design and Manufacturing》 SCIE CSCD 2019年第3期153-160,共8页
This work investigates the machining temperatures of ultra-fine-grained titanium(UFG Ti),prepared by equal channel angular extrusion,through analytical modeling.UFG Ti has great usefulness in biomedical applications b... This work investigates the machining temperatures of ultra-fine-grained titanium(UFG Ti),prepared by equal channel angular extrusion,through analytical modeling.UFG Ti has great usefulness in biomedical applications because of its high mechanical strength,sufficient manufacturability,and high biocompatibility.The temperatures were predicted using a physics-based predictive model based on material constitutive relation and mechanics of the orthogonal cutting process.The minimization between the stress calculated using Johnson–Cook constitutive model and the same stress calculated using mechanics model yields the estimation of machining temperatures at two deformation zones.Good agreements are observed upon validation to the values reported in the literature.The machinability of UFG Ti is investigated by comparing its machining temperature to that of Ti–6Al–4V alloy under the same cutting conditions.Significantly lower temperatures are observed in machining UFG Ti.The computational efficiency of the presented model is investigated by comparing its average computational time(~0.5 s)to that of a widely used modified chip formation model(8900 s)with comparable prediction accuracy.This work extends the applicability of the presented temperature model to a broader class of materials,specifically ultra-fine-grained metals.The high computational efficiency allows the in situ temperature prediction and optimization of temperature condition with process parameters planning. 展开更多
关键词 Ultra-fine-grained titanium Analytical modeling High computational efficiency Johnson–Cook model Cutting mechanics
下载PDF
Computer Methodologies for the Comparison of Some Efficient Derivative FreeSimultaneous Iterative Methods for Finding Roots of Non-Linear Equations
8
作者 Yuming Chu Naila Rafiq +3 位作者 Mudassir Shams Saima Akram Nazir Ahmad Mir Humaira Kalsoom 《Computers, Materials & Continua》 SCIE EI 2021年第1期275-290,共16页
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver... In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature. 展开更多
关键词 Non-linear equation iterative method simultaneous method basins of attractions computational efficiency
下载PDF
A Multiple Nested Lattice Boltzmann Method and Its Application
9
作者 韩善灵 朱平 +1 位作者 来新民 林忠钦 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期71-76,92,共7页
The standard lattice Boltzmann method utilizes uniform grids to maintain a compact computational procedure. However, it is often less efficient to perform hydrodynamic and aerodynamic flow simulations when there is a ... The standard lattice Boltzmann method utilizes uniform grids to maintain a compact computational procedure. However, it is often less efficient to perform hydrodynamic and aerodynamic flow simulations when there is a need for high resolution. To resolve these difficulties, a multiple nested lattice Boltzmann method(MNLBM) was developed, which contains several overlapped layers with different resolutions in the computational domain. The data transference of flow field on two layers is accomplished by a Filippova procedure which is proved to satisfy the continuity of mass, momentum, and stresses across the interface. The proposed method is based on the standard lattice Boltzmann method, so it is easily performed.By numerical investigation, the result of present method has been agreed with that of literature, but the computation efficiency is higher than the standard lattice Boltzmann method. 展开更多
关键词 lattice Boltzmann method uniform grids multiple nested lattice Boltzmann method computational efficiency
下载PDF
Comparison of Lattice Boltzmann Method and Monte Carlo Method for Modeling Phonon Heat Conduction
10
作者 Ya-Fen Han Xin-Lin Xia He-Ping Tan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期75-80,共6页
In order to investigate the applicability and performance of the Lattice Boltzmann Method( LBM) and the Monte Carlo Method( MCM) to simulate phonon heat transfer,a problem of phonon heat transfer in square geometry st... In order to investigate the applicability and performance of the Lattice Boltzmann Method( LBM) and the Monte Carlo Method( MCM) to simulate phonon heat transfer,a problem of phonon heat transfer in square geometry structures of silicon dioxide was taken as an example to compare the calculational results and analyze computational efficiency of the two methods. Moreover,this work analyzed the numerical stability for two methods. The results indicate that the MCM takes much more computation time than the LBM in the same condition. In addition,the results of the two methods have a good agreement in diffusive and diffusive-ballistic domain for investigating the phonon heat transfer. So they can be used to verify each other when the experiments of energy transport in these domains faces difficulty. In ballistic domain,duo to the random error,the temperature distribution curve from MCM is fluctuant. 展开更多
关键词 LBM MCM temperature distributions computational efficiency
下载PDF
Illustrative Application of the 2<sup>nd</sup>-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Point-Detector Response 被引量:2
11
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期355-381,共27页
This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a mathematical model that can simulate the evolution and/or tr... This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response is the value of the model’s state function (particle concentration or particle flux) at a point in phase-space, which would simulate a pointwise measurement of the respective state function. This paradigm model admits exact closed-form expressions for all of the 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to the model’s uncertain parameters and domain boundaries. These closed-form expressions can be used to verify the numerical results of production and/or commercial software, e.g., particle transport codes. Furthermore, this paradigm model comprises many uncertain parameters which have relative sensitivities of identical magnitudes. Therefore, this paradigm model could serve as a stringent benchmark for inter-comparing the performances of all deterministic and statistical sensitivity analysis methods, including the 2<sup>nd</sup>-CASAM. 展开更多
关键词 Second-Order Adjoint Comprehensive Sensitivity Analysis Methodology (2nd-CASAM) Evolution Benchmark Model Exact and Efficient Computation of First- and Second-Order Response Sensitivities
下载PDF
Illustrative Application of the 2<sup>nd</sup>-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Reaction-Rate Detector Response 被引量:2
12
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期382-397,共16页
This work continues the illustrative application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a benchmark mathematical model that can simulate th... This work continues the illustrative application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a benchmark mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response considered in this work is a reaction-rate detector response, which provides the average interactions of particles with the respective detector or, alternatively, the time-average of the concentration of a mixture of substances in a medium. The definition of this model response includes both uncertain boundary points of the benchmark, thereby providing both direct and indirect contributions to the response sensitivities stemming from the boundaries. The exact expressions for the 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to the boundary and model parameters obtained in this work can serve as stringent benchmarks for inter-comparing the performances of all (deterministic and statistical) sensitivity analysis methods. 展开更多
关键词 Second-Order Adjoint Comprehensive Sensitivity Analysis Methodology (2nd-CASAM) Evolution Benchmark Model Exact and Efficient Computation of First- and Second-Order Response Sensitivities
下载PDF
光滑粒子流体力学方法在流体、固体和生物力学中的应用 被引量:1
13
作者 徐绯 王佳怡 +3 位作者 杨扬 王璐 代震 汉芮岐 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2023年第2期3-38,共36页
光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)作为最早发展的无网格粒子方法之一,对于模拟爆炸、冲击等涉及大变形问题,具有广阔的发展前景.本文对SPH方法在流体、固体和生物力学领域的改进算法和工程应用进行了全面介绍.... 光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)作为最早发展的无网格粒子方法之一,对于模拟爆炸、冲击等涉及大变形问题,具有广阔的发展前景.本文对SPH方法在流体、固体和生物力学领域的改进算法和工程应用进行了全面介绍.阐述了SPH的基本理论和高精度SPH改进算法,分析了流体、固体和生物力学领域的改进技术.在模拟流体问题时,采用δ-SPH和GSPH方法解决了流体不稳定性的问题,并且讨论了流固耦合中的界面接触方法.针对固体的数值模拟,总结了三种传统改进方法(如应力点法、守恒光滑法、人工应力法)和Total Lagrangian SPH方法,改善了拉伸不稳定性问题;在生物力学方面,阐述了SPH控制方程和相互作用力的计算方法.本文综述了近年来SPH方法的应用进展,包括复杂海洋工程中的流固耦合问题,固体领域的天体、岩土力学、爆炸冲击以及增材制造等工程应用和生物力学中血流动力学、肠道健康和植物生长等典型应用;并分析了国内外SPH软件的发展,介绍了多尺度自适应分辨率方法、并行计算方法和网格自动生成技术来克服数值模拟方法在计算效率和计算规模上的限制.最后对目前存在的问题进行总结与展望,包括提高SPH算法的数值精度、如何精确描述固体的损伤与断裂问题和计算精度与效率之间的平衡等.在未来研究中,建立多尺度耦合SPH模型和深度学习将是进一步拓宽SPH方法应用的重要方向. 展开更多
关键词 Smoothed particle hydrodynamics High-accuracy algorithms Solid mechanics BIOMECHANICS computational efficiency
原文传递
Development and assessment of algorithms for DEM-LES simulations of fluidized bed
14
作者 Fatima Ez-Zahra El Hamra Radouan Boukharfane 《Particuology》 SCIE EI CSCD 2023年第12期241-257,共17页
The use of high-fidelity Discrete Element Method(DEM)coupled with Computational Fluid Dynamics(CFD)for particle-scale simulations demands extensive simulation times and restricts application to small particulate syste... The use of high-fidelity Discrete Element Method(DEM)coupled with Computational Fluid Dynamics(CFD)for particle-scale simulations demands extensive simulation times and restricts application to small particulate systems.DEM-CFD simulations require good performance and satisfactory scalability on high-performance computing platforms.A reliable parallel computing strategy must be developed to calculate the collision forces,since collisions can occur between particles that are not on the same processor,or even across processors whose domains are disjoint.The present paper describes a parallelization technique and a numerical verification study based on a number of tests that allow for the assessment of the numerical performance of DEM used in conjunction with Large-Eddy Simulation(LES)to model dense flows in fluidized beds.The fluid phase is computed through solving the volume-averaged four-way coupling Navier-Stokes equations,in which the Smagorinsky sub-grid scale tensor model is used.Furthermore,the performance of Sub-Grid Scale(SGS)turbulence models applied to Fluidized Bed Reactor(FBR)configurations has been assessed and compared.The developed numerical solver represents an interesting combination of techniques that work well for the present purpose of studying particle formation in fluidized beds. 展开更多
关键词 DEM-LES Fluidized bed computational efficiency Numerical accuracy
原文传递
A Self-Adaptive Algorithm of the Clean Numerical Simulation(CNS)for Chaos
15
作者 Shijie Qin Shijun Liao 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第5期1191-1215,共25页
The background numerical noise#0 is determined by the maximum of truncation error and round-off error.For a chaotic system,the numerical error#(t)grows exponentially,say,#(t)=#0exp(kt),where k>0 is the so-called no... The background numerical noise#0 is determined by the maximum of truncation error and round-off error.For a chaotic system,the numerical error#(t)grows exponentially,say,#(t)=#0exp(kt),where k>0 is the so-called noise-growing exponent.This is the reason why one can not gain a convergent simulation of chaotic systems in a long enough interval of time by means of traditional algorithms in double precision,since the background numerical noise#0 might stop decreasing because of the use of double precision.This restriction can be overcome by means of the clean numerical simulation(CNS),which can decrease the background numerical noise#0 to any required tiny level.A lot of successful applications show the novelty and validity of the CNS.In this paper,we further propose some strategies to greatly increase the computational efficiency of the CNS algorithms for chaotic dynamical systems.It is highly suggested to keep a balance between truncation error and round-off error and besides to progressively enlarge the background numerical noise#0,since the exponentially increasing numerical noise#(t)is much larger than it.Some examples are given to illustrate the validity of our strategies for the CNS. 展开更多
关键词 CHAOS Clean Numerical Simulation(CNS) self-adaptive algorithm computational efficiency
下载PDF
Novel Planning Approach for Fast-charging Station in Integrated System
16
作者 Xiaoying Shi Yinliang Xu +4 位作者 Qinglai Guo Yujie Sheng Hongbin Sun Feng Chen Yang Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1832-1844,共13页
A promising way to boost popularity of electric vehicles(EVs)is to properly layout fast charging stations(FCSs)by jointly considering interactions among EV drivers,power systems and traffic network constraints.This pa... A promising way to boost popularity of electric vehicles(EVs)is to properly layout fast charging stations(FCSs)by jointly considering interactions among EV drivers,power systems and traffic network constraints.This paper proposes a novel sensitivity analysis-based FCS planning approach,which considers the voltage sensitivity of each sub-network in the distribution network and charging service availability for EV drivers in the transportation network.In addition,energy storage systems are optimally installed to provide voltage regulation service and enhance charging capacity.Simulation tests conducted on two distribution network and transportation network coupled systems validate the efficacy of the proposed approach.Moreover,comparison studies demonstrate the proposed approach outperforms a Voronoi graph and particle swarm optimization combined planning approach in terms of much higher computation efficiency. 展开更多
关键词 Computation efficiency fast charging station integrated system siting and sizing voltage sensitivity
原文传递
Protein Residue Contact Prediction Based on Deep Learning and Massive Statistical Features from Multi-Sequence Alignment
17
作者 Huiling Zhang Min Hao +4 位作者 Hao Wu Hing-Fung Ting Yihong Tang Wenhui Xi Yanjie Wei 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第5期843-854,共12页
Sequence-based protein tertiary structure prediction is of fundamental importance because the function of a protein ultimately depends on its 3 D structure.An accurate residue-residue contact map is one of the essenti... Sequence-based protein tertiary structure prediction is of fundamental importance because the function of a protein ultimately depends on its 3 D structure.An accurate residue-residue contact map is one of the essential elements for current ab initio prediction protocols of 3 D structure prediction.Recently,with the combination of deep learning and direct coupling techniques,the performance of residue contact prediction has achieved significant progress.However,a considerable number of current Deep-Learning(DL)-based prediction methods are usually time-consuming,mainly because they rely on different categories of data types and third-party programs.In this research,we transformed the complex biological problem into a pure computational problem through statistics and artificial intelligence.We have accordingly proposed a feature extraction method to obtain various categories of statistical information from only the multi-sequence alignment,followed by training a DL model for residue-residue contact prediction based on the massive statistical information.The proposed method is robust in terms of different test sets,showed high reliability on model confidence score,could obtain high computational efficiency and achieve comparable prediction precisions with DL methods that relying on multi-source inputs. 展开更多
关键词 multi-sequence alignment residue-residue contact prediction feature extraction statistical information Deep Learning(DL) high computational efficiency
原文传递
Nucleon-pair approximation with uncoupled representation
18
作者 雷杨 路毅 赵玉民 《Chinese Physics C》 SCIE CAS CSCD 2021年第5期129-140,共12页
In this paper,we propose an approach to nucleon-pair approximation(NPA)with m-scheme bases,in which the collective nucleon pairs are represented in terms of antisymmetric matrices,and commutations between nucleon pair... In this paper,we propose an approach to nucleon-pair approximation(NPA)with m-scheme bases,in which the collective nucleon pairs are represented in terms of antisymmetric matrices,and commutations between nucleon pairs are given using a matrix multiplication that avoids angular-momentum couplings and recouplings.Therefore the present approach significantly simplifies the NPA computation.Furthermore,it is formulated on the same footing with and without isospin. 展开更多
关键词 uncoupled representation nucleon-pair approximation FORMALISM computational efficiency
原文传递
Comparison of Two Advection-Diffusion Methods for Tephra Transport in Volcanic Eruptions
19
作者 Kae Tsunematsu Bastien Chopard +1 位作者 Jean-Luc Falcone Costanza Bonadonna 《Communications in Computational Physics》 SCIE 2011年第5期1323-1334,共12页
In order to model the dispersal of volcanic particles in the atmosphere and their deposition on the ground,one has to simulate an advection-diffusionsedimentation process on a large spatial area.Here we compare a Latt... In order to model the dispersal of volcanic particles in the atmosphere and their deposition on the ground,one has to simulate an advection-diffusionsedimentation process on a large spatial area.Here we compare a Lattice Boltzmann and a Cellular Automata approach.Our results show that for high Peclet regimes,the cellular automata model produce results that are as accurate as the lattice Boltzmann model and is computationally more effective. 展开更多
关键词 Cellular automata lattice Boltzmann tephra transport ADVECTION-DIFFUSION computational efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部