期刊文献+
共找到2,262篇文章
< 1 2 114 >
每页显示 20 50 100
Workability and Durability of Concrete Incorporating Waste Tire Rubber:A Review
1
作者 Peng Zhang Xixi Wang +1 位作者 Juan Wang Tianhang Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第2期745-776,共32页
Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the ... Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the construction industry,rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent.As a new building material,rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields.Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete.It has been reported that the addition of waste tire rubber has a significant influence on the performance of concrete.Workability influences the hardened performance of rubber concrete,especially the durability.Based on the current research results,the workability and durability of concrete manufactured with waste tire rubber,including water absorption and permeability,carbonation resistance,chloride ion permeability resistance,and freeze-thaw resistance,are summarized in this paper.It is concluded that the addition of waste tires has a negative effect on the workability of concrete.In terms of durability,concrete exhibits better chloride ion penetration resistance and frost resistance,with a higher water absorption rate,and lower anti-permeability and carbonation resistance owing to the addition of waste tire rubber. 展开更多
关键词 rubber concrete waste tire rubber WORKABILITY DURABILITY
下载PDF
Mechanical Test and Meso-Model Numerical Study of Composite Rubber Concrete under Salt-Freezing Cycle
2
作者 Mingkai Sun Yanan Wang +3 位作者 Pingwei Jiang Zerong Song Zhan Gao Jiaming Xu 《Journal of Renewable Materials》 SCIE EI 2023年第2期643-668,共26页
A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,t... A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test.Through analysis,it is concluded that the optimal proportion of 3~5 mm,1~3 mm,and 20 mesh particle size composite rubber is 1:2.5:5.5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete(RC)with a total content of 10%~20%were designed under this ratio,and the salt-freezing cycle test was carried out with a concentration of 5%Na 2 SO4 solution.The physical and mechanical damage laws during 120 salt-freezing cycles are obtained,and the corresponding damage prediction model is established according to the experimental data.The results show that:on the one hand,the composite rubber in CRC produces a more uniform“graded”structure,forms a retractable particle group,and reduces the loss of mechanical properties of CRC.On the other hand,colloidal particles with different particle sizes are used as air entraining agent to improve the pore structure of concrete and introduce evenly dispersed bubbles,which fundamentally improves the durability of concrete.Under the experimental conditions,the CRC performance is the best when the overall content of composite rubber is 15%. 展开更多
关键词 Waste rubber composite rubber concrete orthogonal test mechanical properties DURABILITY
下载PDF
Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression
3
作者 Chunli Meng Weishu Fu +2 位作者 Jianzeng Shen Yisheng Su Chunying Ye 《Journal of Renewable Materials》 SCIE EI 2023年第2期581-598,共18页
Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete,and studies on the triaxial properties of self-compacting rubber concrete(SCRC)are rare.In this stu... Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete,and studies on the triaxial properties of self-compacting rubber concrete(SCRC)are rare.In this study,35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression,where the rubber contains two types,i.e.,380μm rubber powder and 1–4 mm rubber particles,and four contents,i.e.,10%,20%and 30%.The test results demonstrated that SCRC exhibited a typical oblique shear failure mode under triaxial compression and had a more moderate descending branch compared with self-compacting concrete(SCC).The presence of lateral stress can significantly improve the compression properties,including initial elastic modulus,peak stress and peak strain,with an improvement range of 3%–73%for peak stress.While rubber aggregates mainly targeted the deformation abilities and toughness for improvement,and the peak strain improvement ranges were 0.1–3.1 times and 0.1–1.0 times for SCRC containing rubber powder and SCRC containing rubber particles,respectively,relative to SCC.At a high lateral stress of at least 12 MPa,the loss of strength due to the addition of rubber can be controlled within 10%,in which case the content of rubber powder and rubber particles was recommended to be at most 20%and 30%,respectively.Based on the Mohr-Coulomb theory,the failure criteria of SCRC with different rubber types were established.For analysis and design purposes,an empirical model was proposed to predict the stressstrain behavior under triaxial compression,considering the influence of different rubber content and lateral stress.The results obtained in this study can provide a valuable reference for the design and application of self-compacting rubberized concrete in practical projects,especially those involving three-way compression states and requiring high-quality deformation and energy dissipation. 展开更多
关键词 Self-compacting rubberized concrete rubber types triaxial mechanical properties failure criterion constitutive model
下载PDF
Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression
4
作者 Yanli Hu Peiwei Gao +2 位作者 Furong Li Zhiqing Zhao Zhenpeng Yu 《Journal of Renewable Materials》 SCIE EI 2023年第4期2055-2073,共19页
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di... In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC. 展开更多
关键词 rubber fibre reinforced concrete(RFRC) biaxial compression-compression mechanical properties mechanism analysis failure criterion
下载PDF
Determination of the Sound Absorption Capacity of Hydraulic Concrete Mixtures Added with Waste Tire Rubber
5
作者 María Luisa Moguel Pacheco Fermín Castillo Mejía +3 位作者 Yamilet Rodríguez Lazcano Andrés Aguilar Negrete Arturo Molina Ocampo Jesús Mario Colín de la Cruz 《Journal of Minerals and Materials Characterization and Engineering》 2023年第5期197-211,共15页
There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycl... There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields. 展开更多
关键词 Hydraulic concrete Waste Tire rubber Sound Absorption Noise Reduction Coefficient
下载PDF
Using Crumb Rubber to Improve the Properties of Concrete from the Sustainability Point of View
6
作者 Yamei Zhang 《Journal of Civil Engineering and Architecture》 2023年第12期630-635,共6页
In the past decade,the economy of China has been increasing at a remarkable speed,which causes the rapid increase of automobile industry.Researches in past years demonstrated that the incorporation of crumb rubber int... In the past decade,the economy of China has been increasing at a remarkable speed,which causes the rapid increase of automobile industry.Researches in past years demonstrated that the incorporation of crumb rubber into concrete reduces the mechanical strength of concrete.However,properties such as plastic shrinkage cracking resistance,dry shrinkage cracking resistance,frost resistance,impact resistance,fatigue resistance etc.are improved due to the deformable feature of crumb rubber.Therefore,it is expected that using crumb rubber in concrete not only improves the properties of the material,but also reduces the environmental pressure of handling waste tires. 展开更多
关键词 Crumb rubber concrete PROPERTY SUSTAINABILITY
下载PDF
Effect of Rubber Particle Modifi cation on Properties of Rubberized Concrete 被引量:6
7
作者 张海波 GOU Mifeng +1 位作者 LIU Xiaoxing 管学茂 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期763-768,共6页
To improve the combination of cement matrix and waste tire rubber particles in concrete, the rubber particles were treated with acrylic acid(ACA) and polyethylene glycol(PEG) for grafting hydrophilic groups on their s... To improve the combination of cement matrix and waste tire rubber particles in concrete, the rubber particles were treated with acrylic acid(ACA) and polyethylene glycol(PEG) for grafting hydrophilic groups on their surfaces. The X-Ray photoelectron spectroscopy(XPS) and surface contact angle were used to characterize the hydrophilicity and surface functional group of rubber particles. The effect of rubber particle modifi cation on fresh/hardened properties of rubberized concrete was studied. The experimental results show that the contact angle between rubber particle surface and water decreases when rubber particle is modifi ed. Compared with the unmodifi ed rubberized concrete(RC), the unit weight of modifi ed rubberized concrete(MRC) changes slightly. However, the slump, air-entrainment, compressive strength, flexural strength, and impact performance of MRC are obviously improved. Under good condition of slump, the water-cement ratio of the MRC can be reduced from 0.4 to 0.38. And the compressive strength and fl exural strength of the MRC(10% rubber particle content) can be increased by 25.9% and 26.4%, respectively. 展开更多
关键词 橡胶颗粒 混凝土性能 离子对 X射线光电子能谱 橡胶混凝土 橡胶粒子 抗压强度 MRC
原文传递
The Abrasion-resistance Investigation of Rubberized Concrete 被引量:1
8
作者 亢景付 ZHANG Bo LI Guangu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1144-1148,共5页
The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives. The abrasion tests were conducted in accordance with the Chinese stand... The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives. The abrasion tests were conducted in accordance with the Chinese standard test method DL/T 5150 - 2001, two recommended test methods: under water method and ring method, were used. The crumb tire rubbers with the sieve size of 8-mesh and 16-mesh were incorporated into the concrete by replacing same volume of sand and as an additive. The abrasion resistance of concrete was evaluated according to the abrasion resistance strength and the mass loss. Test results show that the addition of silica fume enhanced both compressive strength and abrasion resistance of concrete, and the addition of crumb rubber reduced the compressive strength but increased notably the abrasion resistance of the concrete. Silica fume concrete performed a better abrasion resistance than control concrete, and the rubberized concrete performed a much better abrasion resistance than silica fume concrete. The abrasion resistance of rubberized concrete increased with the increase of rubber content. 展开更多
关键词 橡胶混凝土 耐磨性 硅粉混凝土 标准试验方法 耐磨损性 橡胶添加剂 抗压强度 磨损试验
原文传递
The Properties of Sulfur Rubber Concrete (SRC) 被引量:1
9
作者 李悦 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期129-133,共5页
The mix designs and specimen preparation for the dry process and wet process of sulfur rubber concrete (SRC) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discussed. ... The mix designs and specimen preparation for the dry process and wet process of sulfur rubber concrete (SRC) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discussed. The results show that SRC is corrosion-resistanct. Although the compressive strength of SRC decreases with increasing rubber content, the toughness increases instead. Adding micro-filler will improve the compressive strength of SRC. There is a threshold value for the sulfur content, at which the compressive strength and the workability of SRC reach an optimum balance. The bond between rubber particles and surrounding sulfur is strong due to the vulcanization process that generates cross-links through S-C bonds. 展开更多
关键词 硫橡胶水泥 混合设计 干法 湿法
下载PDF
Properties Evaluation of Concrete using Local Used Bricks as Coarse Aggregate 被引量:1
10
作者 Riaz Bhanbhro Irfanullah Memon +2 位作者 Aziz Ansari Ahsan Shah Bashir Ahmed Memon 《Engineering(科研)》 2014年第5期211-216,共6页
With time concrete / reinforced concrete has become the popular material for construction. Modern industry utilizes this material a lot and has produced various beautiful, eye catching and amazing structures. Due to m... With time concrete / reinforced concrete has become the popular material for construction. Modern industry utilizes this material a lot and has produced various beautiful, eye catching and amazing structures. Due to modern requirements for living and developed construction industries, the old buildings (usually constructed with brick masonry) are demolished and are replaced with new modern buildings. Demolition of buildings results in waste materials which can create waste related problems and environmental issues. By using recycled aggregates weight of concrete can also be reduced, which can also solve problems related to self-weight of concrete. In this paper attempt has been made to use local used bricks from vicinity of Nawabshah, Pakistan, as coarse aggregate. Concrete cubes made with local recycled bricks are cast and tested for overall weight of concrete, moisture content, dynamic modulus of elasticity and compressive strength (nondestructive and destructive methods). The results showed that concrete derived from recycled aggregates attained lower strength than regular concrete. More detailed elaborated work is recommended with different mix ratios and different proportions recycled aggregates for better conclusions. 展开更多
关键词 Recycled Aggregate Used local bricks Lightweight concrete
下载PDF
Crack Propagation and Failure Characteristics of Modeled Concrete with Natural and Brick Aggregates
11
作者 Qiong Liu Jianzhuang Xiao Amardeep Singh 《Journal of Renewable Materials》 SCIE EI 2021年第7期1309-1327,共19页
The failure characteristics of recycled concrete containing brick aggregates are still indistinct,especially how the angular aggregates effect the crack propagation.Based on the concept of modeled concrete,the develop... The failure characteristics of recycled concrete containing brick aggregates are still indistinct,especially how the angular aggregates effect the crack propagation.Based on the concept of modeled concrete,the development of cracks in concrete containing the natural aggregate and brick aggregate under a compression loading was studied.The strain distribution was analyzed with the Digital Image Correlation(DIC).The modeled aggregates include circular and squared ones,and the squared modeled aggregates were placed in different orientations,including 0°,22.5°and 45°.The results show that when the aggregate is placed at 45°,the upper and lower vertices of the aggregate lead to the highest critical strain concentration,therefore,cracks are easy to propagate from these areas and the strength of the corresponding modeled concrete is the lowest.When the modeled natural aggregate is placed at the orientation of 0°,the strain concentration first appears at the interface on both lateral sides of the aggregate.The brick aggregate has a lower elastic modulus and strength than the surrounding mortar.As a result,cracks always propagate through the brick aggregate,which is the primary reason for the low strength of the corresponding concrete. 展开更多
关键词 Recycled concrete brick aggregate modeled concrete mechanical properties crack propagation
下载PDF
Effect of the Substitution of Sand by Rubber of Waste Tires on the Mechanical Properties of Hydraulic Concrete and Exposure to Gamma Radiation
12
作者 Jesús M. Colín de la Cruz Carmen Gabriela Guzmán +5 位作者 Fermín Castillo Mejía Benjamin Leal Acevedo Osvaldo Flores Cedillo Isabel Gamboa de Buen Arturo Molina Ocampo Horacio Martínez Valencia 《Journal of Minerals and Materials Characterization and Engineering》 2021年第3期245-256,共12页
For a long time and until now, rubber is the most used material for the manufacture of tires for motor vehicles. Unfortunately, once the tire meets its life cycle, the remaining rubber cannot be recycled, so the tires... For a long time and until now, rubber is the most used material for the manufacture of tires for motor vehicles. Unfortunately, once the tire meets its life cycle, the remaining rubber cannot be recycled, so the tires are discarded in collection centers and often in clandestine dumps. This represents a serious environmental problem because, in one case, these waste tires become breeding grounds for insects and wildlife that is harmful to humans. In the second case, the tires are burned, releasing highly damaging gases into the atmosphere. On the other hand, concrete is worldwide the construction material par excellence. It is basically composed of cement, gravel and sand. Mixing these three components in different proportions, their mechanical strength in compression can be increased. However, due to its fragile nature, concrete, once a crack is formed, it rapidly advances by fragmenting the material and producing its rapid collapse. In the present work, in order contribute to the care of the environment as well as to modify the fracture mode of the concrete, rubber particles obtained from waste tires were used as sand substitute in hydraulic concrete. In addition, rubber modified samples concrete were lately exposed to 70 kGy of gamma radiation in order to study the effects of this radiation on the mechanical deformation of concrete. The results showed a decrease in the mechanical properties of the concrete with rubber particles with respect to the traditional concrete itself. However, such decreases were offset by the fact that samples with rubber addition do not collapses as fast as the free rubber samples. The acquired data pave the way for research with great benefits, such as the use of recycled tires in concrete for its fracture mode modification in a beneficial way, as well as a possible decrease in the cost of concrete. 展开更多
关键词 Hydraulic concrete Scrap Tire rubber STRENGTH Gamma Radiation Mechanical Properties
下载PDF
Experimental Study of Rubberized Asphalt Emulsion Modified Portland cement concrete
13
作者 Li Guoqiang Wei Lianyu wand Maoxiang, and Huang Wei 《河北工业大学学报》 CAS 1997年第A01期48-57,共10页
The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface lay... The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface layer materials. In this paper, a new kind of cement asphalt emulsion composite-rubberized asphalt emulsion modified Portland cement concrete (RACC) was proposed, which was formed by dispersing rubberized aSPhalt emulsion coated coarse aggregates into cement mortar matrix. In order to evaluate systematically the performance of RACC, laboratory tests with nearly one thousand SPecimen were conducted for resilient modulus, fatigue properties, ultimate ban and length,abrasion, temperature contraction, and dry shrinkage. The experimental results show that the problems existed in C-ETM have to a great extends been solved by RACc. To verify the field performance and inquire into paving technology, teSt road appearsatlsfactory it is concluded that when thed ape surface laycr of semi-rigid base course, RACC is more for surface layer material than both Portland cement concrete(PCC) and asphalt concrete(AC) 展开更多
关键词 AC ETM ICPT Experimental Study of rubberized Asphalt Emulsion Modified Portland cement concrete
下载PDF
Effects of Recycled Tires Rubber Aggregates on the Characteristics of Cement Concrete
14
作者 Zeineddine Boudaoud Miloud Beddar 《Open Journal of Civil Engineering》 2012年第4期193-197,共5页
This experimental work investigates the impact of substituting part of the conventional aggregates with rubber aggregates on certain characteristics of the cement concretes. This incorporation of rubber aggregates res... This experimental work investigates the impact of substituting part of the conventional aggregates with rubber aggregates on certain characteristics of the cement concretes. This incorporation of rubber aggregates resulting from cutting worn tires in practical sizes decreases the mechanical resistances of the concretes while improving slightly the fluidity of the tested mixtures. The effect of these aggregates on the shrinkage of the concretes at an early age is appreciable and even very interesting for the concretes used, for example, in road construction. This technique of cutting worn tires without any further treatment makes it accessible to everyone which helps not only in saving the environment by getting rid of this cumbersome waste but also in saving traditional aggregates. 展开更多
关键词 rubber WASTE Tires concrete Mechanical RESPONSE SHRINKAGE
下载PDF
Effect of High-Stress Equal Amplitude Cyclic Loading on Mechanical and Deformation Characteristics of Rubber Concrete
15
作者 Xin Huang Yu Chen 《Journal of Architectural Research and Development》 2019年第5期1-4,共4页
In order to study the mechanical and deformation characteristics of rubber concrete under repeated loading,50 cycles of high-stress equal amplitude cyclic loading and uniaxial compression tests were carried out on 30 ... In order to study the mechanical and deformation characteristics of rubber concrete under repeated loading,50 cycles of high-stress equal amplitude cyclic loading and uniaxial compression tests were carried out on 30 concrete specimens of 5 groups.The change of uniaxial mechanical properties and the deformation during cyclic loading of normal concrete(NC)and rubber concrete(RC)with 5%,10%,15%,and 20%content were analysed.The results show that the peak stress and modulus of elasticity decrease and the peak strain increases with the increase of rubber content.After cyclic loading,the degradation degree of NC peak stress and elastic modulus reached 11.0%and 36.8%respectively.This study can provide a basis for the application of rubber concrete. 展开更多
关键词 rubber concrete CYCLIC loading MECHANICAL properties TOTAL STRAIN
下载PDF
Waste Tire Rubber Particles using to Improve the Properties of Local Asphalt Concrete
16
作者 Abdulali Bashir Ahmed Ben Saleh 《Journal of Chemistry and Chemical Engineering》 2010年第11期44-48,共5页
关键词 沥青混凝土 混凝土性能 废旧轮胎 橡胶颗粒 马歇尔试验 橡胶混合物 沥青混合物 橡胶粘合剂
下载PDF
Experimental Survey on Dry Asphalt Rubber Concrete for Sub-ballast Layers
17
作者 Gaetano Di Mino Ciro Maurizio Di Liberto 《Journal of Civil Engineering and Architecture》 2012年第12期1615-1626,共12页
关键词 橡胶沥青混凝土 马歇尔试验 子层 机械性能 DARC 集中质量模型 回填材料 橡胶含量
下载PDF
Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes
18
作者 Ali Mahamied Amjad AYasin +2 位作者 Yazan Alzubi Jamal Al Adwan Issa Mahamied 《Structural Durability & Health Monitoring》 EI 2023年第6期501-519,共19页
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu... Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior. 展开更多
关键词 Reinforced concrete low-rise structure vertical irregularity the influence of pulse-like earthquake characteristics lead rubber bearing isolators nonlinear response history analysis
下载PDF
Application of Fractal Theory in Brick-Concrete Structural Health Monitoring
19
作者 Changmin Yang Xia Zhao +1 位作者 Yanfang Yao Zhongqiang Zhang 《Engineering(科研)》 2016年第9期646-656,共12页
In order to monitor and forecast the deformation of the brick-concrete building, by taking a brick-concrete building as research object, fiber grating sensors were used to collect the monitoring data and double logari... In order to monitor and forecast the deformation of the brick-concrete building, by taking a brick-concrete building as research object, fiber grating sensors were used to collect the monitoring data and double logarithmic curve of limit value characteristic and monitoring data were obtained based on the fractal theory. Constant dimension fractal method cannot be used to analyze the data directly. With the method of variable dimension fractal, we accumulate data, and the double logarithmic curve is smooth. Piecewise fractal dimensions are close. The outer interpolation method is used to calculate the fractal dimension of the next point and then back calculate the vertical displacement. The relative errors are calculated by comparing the forecast values and monitoring values, and the maximum relative error is 5.76%. The result shows that the fractal theory is suitable to use in the forecast of the deformation and the accuracy is good. 展开更多
关键词 brick-concrete Building Real-Time Monitoring Fiber Grating Sensors Constant Di-mension Fractal Variable Dimension Fractal Log-Log Line Prediction
下载PDF
再生细骨料和砖粉双掺对3D打印混凝土性能的影响
20
作者 张海燕 马金一 +1 位作者 吴波 吕艳梅 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期18-27,共10页
为减少3D打印混凝土中天然骨料及胶凝材料的用量,本文采用再生混凝土细骨料替代部分天然细骨料,砖粉替代部分水泥,首先开展单掺再生细骨料(取代率为0、25%、50%、75%和100%)、单掺砖粉(取代率为0、5%、10%、15%、20%和30%)和两者双掺的... 为减少3D打印混凝土中天然骨料及胶凝材料的用量,本文采用再生混凝土细骨料替代部分天然细骨料,砖粉替代部分水泥,首先开展单掺再生细骨料(取代率为0、25%、50%、75%和100%)、单掺砖粉(取代率为0、5%、10%、15%、20%和30%)和两者双掺的现浇混凝土的流动性和抗压强度试验,以获得再生细骨料和砖粉的适宜取代率;然后探究50%再生细骨料和10%砖粉双掺及配合比调整方式(附加水、提高减水剂用量)对3D打印混凝土拌合物性能及硬化后力学性能的影响。试验结果表明,当再生细骨料的掺量不超过50%时,现浇混凝土抗压强度降低幅度在10%以内;随着砖粉掺量从0增加到30%,现浇混凝土抗压强度总体呈现先增后减、再稍有增加的趋势,当砖粉掺量为10%时,混凝土抗压强度最高;相比于单掺50%再生细骨料的混凝土,50%再生细骨料和10%砖粉双掺时混凝土强度有所增加,而流动性基本不变。对于3D打印混凝土,同时掺入50%再生细骨料和10%砖粉,并采用添加附加水的方式保持3D打印混凝土初始扩展度不变,会使得混凝土的可建造性提高,但坍落度、开放时间、抗压和劈裂抗拉强度降低,强度各向异性加剧;而提高减水剂用量不仅能显著提升3D打印混凝土的流动性能、开放时间和抗压强度,还能降低打印试件的强度各向异性。 展开更多
关键词 3D打印混凝土 再生细骨料 砖粉 打印性能 硬化性能 各向异性
下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部