期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Experimental investigation of ultra-early-strength cement-based selfcompacting high strength concrete slabs(URCS)under contact explosions 被引量:1
1
作者 Wei Wang Qing Huo +2 位作者 Jian-chao Yang Jian-hui Wang Xing Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期326-339,共14页
In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explo... In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explosive performance of URCS.In the experiment,three kinds of ultra-early-strength cement-based reinforced concrete slabs with different reinforcement ratios and a normal concrete slab(NRCS)were used as the control specimen,the curing time of URCS is 28 days and 24 h respectively.The research results show that URCS has a stronger anti-explosion ability than NRCS.The failure mode of URCS under contact explosion is that the front of the reinforced concrete slab explodes into a crater,and the back is spall.With the increase of the charge,the failure mode of the reinforced concrete slab gradually changed to explosive penetration and explosive punching.The experiment results also show that the reinforcement ratio of URCS has little effect on the anti-blast performance,and URCS can reach its anti-blast performance at 28 days after curing for 24 h.On this basis,the damage parameters of URCS for different curing durations were quantified,and an empirical formula for predicting the diameter of the crater and spalling was established. 展开更多
关键词 Ultra-early-strength concrete slabs Blast load Contact blast Blast-resistant performance
下载PDF
Lead spall velocity of fragments of ultra-high-performance concrete slabs under partially embedded cylindrical charge-induced explosion
2
作者 Yi Fan Li Chen +2 位作者 Heng-bo Xiang Qin Fang Fang-yu Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期50-59,共10页
When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to n... When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to nearby personnel and equipment. To study the lead fragment velocity of ultra-high-performance concrete(UHPC), partially embedded explosion experiments were performed on UHPC slabs of limited thickness using a cylindrical trinitrotoluene charge. The launch angles and velocities of the resulting fragments were the determined using images collected by high-speed camera to document the concrete spalling and fragment launching process. The results showed that UHPC slabs without fiber reinforcement had a fragment velocity distribution of 0-118.3 m/s, which are largely identical to that for a normal-strength concrete(NSC) slab. In addition, the fragment velocity was negatively correlated to the angle between the velocity vector and vertical direction. An empirical Eq. for the lead spall velocity of UHPC and NSC slabs was then proposed based on a large volume of existing experimental data. 展开更多
关键词 Ultra-high-performance concrete Reinforced concrete slabs Explosion Fragment velocity Blast resistance
下载PDF
Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method 被引量:9
3
作者 汪维 张舵 +2 位作者 卢芳云 汤福静 王松川 《Journal of Central South University》 SCIE EI CAS 2013年第2期510-519,共10页
Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that ... Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels. 展开更多
关键词 blast load failure mode pressure impulse diagram One-way reinforced concrete slab single degree of freedom
下载PDF
Damage analysis of POZD coated square reinforced concrete slab under contact blast 被引量:4
4
作者 Wei Wang Qing Huo +3 位作者 Jian-chao Yang Jian-hui Wang Xing Wang Wei-liang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1715-1726,共12页
High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have ... High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have chemical properties such as acid and alkali corrosion resistance and aging resistance. Polyisocyanate-oxazodone(POZD) polymer has the above characteristics, it also has the advantages of strong toughness, high strength and high elongation. The concrete slab sprayed with POZD material has excellent anti-blast performance. In order to explore the damage characteristics of POZD sprayed concrete slabs under the action of contact explosion thoroughly, the contact explosion test of POZD concrete slabs with different charges were carried out. On the basis of experimental verification,numerical simulation were used to study the influence of the thickness of the POZD on the blast resistance of the concrete slab. According to the test and numerical simulation results that as the thickness of the coating increases, the anti-blast performance of the concrete slab gradually increases,and the TNT equivalent required for critical failure is larger. Based on the above analysis, empirical expressions on normalized crater diameter, the normalized spall diameter and normalized spall diameter are obtained. 展开更多
关键词 Contact exposion Square reinforced concrete slab POZD coating Numerical simulation
下载PDF
Improved methods for decreasing stresses of concrete slab of large-span through tied-arch composite bridge 被引量:2
5
作者 周德 叶梅新 罗如登 《Journal of Central South University》 SCIE EI CAS 2010年第3期648-652,共5页
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso... Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously. 展开更多
关键词 composite bridge concrete slab tension through tied-arch large span finite element method
下载PDF
Sensor location in concrete slabs with various layout of opening using modified ‘FEMS-COMAC’ approach 被引量:1
6
作者 H.Vosoughifar P.Manafi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期205-222,共18页
Two-way concrete slabs are widely used around the world for the construction of many types of infrastructures and common buildings. The optimal sensor placement(OSP) in slabs with various opening positions is the most... Two-way concrete slabs are widely used around the world for the construction of many types of infrastructures and common buildings. The optimal sensor placement(OSP) in slabs with various opening positions is the most important issue in structural health monitoring(SHM) to increase reliability. In this study, a novel approach of OSP was evaluated to obtain the number and placement of sensors using examination of the closed loop performance. The nonlinear finite element(NFE) was used to discretize the mechanism behavior of slab. Multi-Objective Optimization based on the coordinate modal assurance criterion(COMAC) and cost considerations was considered in the optimization processes. All of the analysis, discretization and optimization process was designed and developed as a novel approach in Matlab by the author under the name ‘FEMS-COMAC’(FEM analysis of slab with COMAC). The points in the finite element method(FEM) mesh were classified as line by line information along the slab. The OSP in each line was optimized according to the objective function. The slabs with various width, thickness, aspect ratio and opening position were selected as case studies. The results of the OSP using the COMAC algorithm around the slab openings were compared with the novel ‘FEMS-COMAC’ method. The statistical analysis according Mann-Whitney criteria shows that there were significant differences between them in some of the case studies(mean P-value=0.54). 展开更多
关键词 two-way concrete slabs OPENINGS OSP MAC COMAC
下载PDF
Acoustic Emission Properties of Concrete Slab During Fatigue Testing with a Running-Wheel Load
7
作者 Mitsuharu Shiwa Zhengwang Li +2 位作者 Takuya Maeshima Yasuhiro Koda Yasushi Tanaka 《Journal of Civil Engineering and Architecture》 2017年第3期213-221,共9页
AE (acoustic emission) signals from concrete slab during fatigue testing with a running-wheel load were evaluated. The signals were recorded by remote sensors connected to a computer network. The sensing equipment c... AE (acoustic emission) signals from concrete slab during fatigue testing with a running-wheel load were evaluated. The signals were recorded by remote sensors connected to a computer network. The sensing equipment consisted of 60 kHz resonant-type AE sensors mounted on a reinforcing steel bar as a waveguide, together with a 16-channel sensor highway AE system. Because the detected AE signals included periodic mechanical noise from the motion of the wheel, these noises were eliminated by means of signal processing. The AE waveguide measurement over a length of 3 m detected fractures as vertical and horizontal cracks in the RC (reinforced concrete) slab. Those cracks were analyzed by correlating AE parameters with macroscopic distortions and the numbers of fatigue cycles. In the AE events and AE energy, two types of AE phenomena, active region and inactive region, were observed during fatigue testing. The vertical cracks were characterized by an AE amplitude of 58 dB, a peak frequency of 30 kHz, and a ratio of the rise time to the maximum amplitude value (RA) of 100. The horizontal cracks were characterized by an AE amplitude of 85 dB, a peak frequency of 60 kHz, and an RA value of 10. 展开更多
关键词 Acoustic emission concrete slab WAVEGUIDE fatigue testing running-wheel load.
下载PDF
Influence of Heat Exchange Coefficients on Both Optimized Thermal Contact (OTCR) and Critical (CTCR) Resistances at the Contact Interface of a Flat Concrete Slab and a Rice Straw Board
8
作者 Alassane Diene Mamadou Lamine Lo +6 位作者 Abdoulaye Sene Ablaye Fame Youssou Traore Seydou Faye Issa Diagne Mamadou Babacar Ndiaye Gregoire Sissoko 《Energy and Power Engineering》 2021年第12期392-402,共11页
The study is carried out in imperfect contact with a concrete slab wall attached to a panel based on rice straw compressed in a dynamic frequency regime. We will propose the characterization of thermal insulation for ... The study is carried out in imperfect contact with a concrete slab wall attached to a panel based on rice straw compressed in a dynamic frequency regime. We will propose the characterization of thermal insulation for thermal resistance of contact (<i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0.05 m). The impact of heat exchange coefficients on the front face (</span><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0 m) and the rear face (</span><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0.1 m) on these resistors is shown.</span> 展开更多
关键词 concrete slab Rice Straw Board Thermal Resistance of Contact Frequency Dynamic
下载PDF
Numerical study on local failures of reinforced concrete slabs against underwater close-in explosions
9
作者 Fei ZHOU Hedong LI Hao WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第8期650-669,共20页
Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosio... Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosions.In this study,we established a fully validated high-fidelity finite element analysis approach to precisely reproduce the local failures of RC slabs after a UWCI explosion.A recently proposed dynamic constitutive model is used to describe wet concrete.The effects of free water content on the material properties,including the tensile/compressive strength,elastic modulus,strain rate effect,failure strength surface,and equation of state,are comprehensively calibrated based on existing test data.The calibrated material parameters are then verified by a single-element test.A high-fidelity finite element analysis(FEA)approach of an RC slab subjected to a UWCI explosion is established using an arbitrary Lagrangian-Eulerian(ALE)algorithm.Simulating previous UWCI explosion tests on RC orifice targets and underwater contact explosion tests on saturated concrete slabs showed that the established FEA approach could accurately reproduce the pressure-time history in water and damage patterns,including the cracking,cratering,and spalling,of the RC orifice target and saturated concrete slab.Furthermore,parametric studies conducted by simulating an RC slab subjected to a UWCI explosion showed that:(i)the local failure of an RC slab enlarges with increased charge weight,reduced standoff distance,and reduced structural thickness;(ii)compared to a water-backed RC slab,an air-backed RC slab exhibits much more obvious local and structural failure.Lastly,to aid the anti-explosion design of relevant underwater facilities,based on over 90 simulation cases empirical formulae are summarized to predict local failure modes,i.e.,no spall,spall,and breach,of water-and air-backed RC slabs subjected to a UWCI explosion. 展开更多
关键词 Reinforced concrete slab(RC) Underwater close-in(UWCI)explosion Saturated concrete Failure modes Numerical simulation
原文传递
Precast system and assembly connection of cement concrete slabs for road pavement: A review 被引量:6
10
作者 Mingjing Fang Ran Zhou +3 位作者 Wenhui Ke Bo Tian Yubin Zhang Jianjun Liu 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2022年第2期208-222,共15页
Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as ... Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed. 展开更多
关键词 Road engineering Prefabricated pavement Cement concrete slab Structural design Assembly connection
原文传递
Refined mathematical model for the breaching of concrete-face sand-gravel dams due to overtopping failure
11
作者 QIU Wen LI Yan-long +2 位作者 WEN Li-feng WANG Jing YIN Qiao-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第3期670-687,共18页
Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching o... Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching of CFSGDs.The model characteristics were as follows:(1)Based on the Renormailzation Group(RNG)k-εturbulence theory and volume of fluid(VOF)method,the turbulent characteristics of the dam-break flow were simulated,and the erosion surface of the water and soil was tracked;(2)In consideration of the influence of the change in the sediment content on the dam-break flow,the dam material transport equation,which could reflect the characteristics of particle settlement and entrainment motion,was used to simulate the erosion process of the sand gravels;(3)Based on the bending moment balance method,a failure equation of the concrete face slab under dead weight and water load was established.The proposed model was verified through a case study on the failure of the Gouhou CFSGD.The results showed that the proposed model could well simulate the erosion mode of the special vortex flow of the CFSGD scouring the support body of the concrete face slab inward and reflect the mutual coupling relationship between the dam-break flow,sand gravels,and concrete face slabs.Compared with the measured values,the relative errors of the peak discharge,final breach average width,dam breaching duration,and maximum failure length of the face slab calculated using the proposed model were all less than 12%,thus verifying the rationality of the model.The proposed model was demonstrated to perform better and provide more detailed results than three selected parametric models and three simplified mathematical models.The study results can aid in establishing the risk level and devising early warning strategies for CFSGDs. 展开更多
关键词 concrete-face sand-gravel dam OVERTOPPING Dam-break flow concrete face slab failure Refined mathematical model
原文传递
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
12
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization Strengthening material Blast resistance Masonry wall Reinforced AAC panel Plain concrete slab
下载PDF
Deflection and stress of hollow CRCP slab under concentrated vehicle load 被引量:2
13
作者 陈小兵 黄晓明 +1 位作者 丁建明 童金虎 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期213-216,共4页
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin... Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness. 展开更多
关键词 concentrated vehicle load equivalence principle half-wave sine load elastic thin plates hollow continuouslyreinforced concrete pavement slab deflection and stressformulae slab thickness
下载PDF
Spallation Mechanism of RC Slabs Under Contact Detonation 被引量:5
14
作者 袁林 龚顺风 金伟良 《Transactions of Tianjin University》 EI CAS 2008年第6期464-469,共6页
The spallation of the concrete slabs or walls resulting from contact detonation constitutes risk to the personnel and equipment inside the structures because of the high speed concrete fragments even though the overal... The spallation of the concrete slabs or walls resulting from contact detonation constitutes risk to the personnel and equipment inside the structures because of the high speed concrete fragments even though the overall structures or structural members are not destroyed completely. Correctly predicting the damage caused by any potential contact detonation can lead to better fortification design to withstand the blast Ioadings. It is therefore of great significance to study the mechanism involved in the spallation of concrete slabs and walls. Existing studies on this topic often employ simplified material models and 1D wave analysis, which cannot reproduce the realistic response in the spallation process. Numerical simulations are therefore carried out under different contact blast Ioadings in the free air using LS-DYNA. Sophisticated concrete and reinforcing bar material models are adopted, taking into account the strain rate effect on both tension and compression. The erosion technique is used to model the fracture and failure of materials under tensile stress. Full processes of the deformation and dynamic damage of reinforced concrete (RC) slabs and plain concrete slabs are thus observed realistically. It is noted that with the increase of quantity of explosive, the dimensions of damage crater increase and the slabs experience four different damage patterns, namely explosive crater, spalling, perforation, and punching. Comparison between the simulation results of plain concrete slabs and those of RC slabs show that reinforcing bars can enhance the integrity and shearing resistance of the slabs to a certain extent, and meanwhile attenuate the ejection velocity and decrease the size of the concrete fragments. Therefore, optimizing reinforcement arrangement can improve the anti-spallation capability of the slabs and walls to a certain extent. 展开更多
关键词 SPALLATION contact detonation reinforced concrete slab numerical simulation
下载PDF
Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading 被引量:5
15
作者 都浩 李忠献 《Transactions of Tianjin University》 EI CAS 2009年第1期61-64,共4页
In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the... In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the dynamic behavior of RC slabs under blast loading and its influencing factors are studied. The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software. Both the strain rate effect and the damage accumulation are taken into account in the material model. The dynamic responses of the RC slab subjected to blast loading are analyzed, and the influence of concrete strength, thickness and reinforcement ratio on the behavior of the RC slab under blast loading is numerically investigated. Based on the numerical results, some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading. 展开更多
关键词 blast loading reinforced concrete slab dynamic behavior numerical analysis
下载PDF
Possible Collapse Mode for Slender Reinforced Concrete Plates Subjected to Blast Load
16
作者 ZHANG Xin 杜修力 +1 位作者 CHEN Zhen ZENG Fanna 《Transactions of Tianjin University》 EI CAS 2008年第B10期500-503,共4页
This paper discusses the collapse mode of thin reinforced concrete (RC) plates sub-jected to blast load. To extend the well known plastic-mode method to analyze, not only perfect-plastic plates , but also RC plates, i... This paper discusses the collapse mode of thin reinforced concrete (RC) plates sub-jected to blast load. To extend the well known plastic-mode method to analyze, not only perfect-plastic plates , but also RC plates, it is needed to investigate the effect of material cracking on the collapse mode because the plate might have been cracked on both upper and lower surface before the plastic-mode fully develops, creating an unexpected type of collapse mode shape. A new fail-ure mode is proposed and verified by numerical analysis in this paper. The new mode is a result of the material cracking and has an un-negligible effect on the reaction mechanism of the RC plate to the blast load. 展开更多
关键词 pulse load flexural wave and reinforced concrete slab
下载PDF
Flexural behaviour of SFRRAC two-way composite slab with different shapes 被引量:1
17
作者 Luo Bin Huang Wei 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期414-424,共11页
To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,on... To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,one cast-in-site concrete slab of ordinary concrete and one CCS of ordinary concrete by steel bar truss(as recommended in the technical specification for precast concrete structures in Chinese)were compared through experiments.The carrying capacity,flexural behaviour and bi-directional mechanical properties of the specimens were systematically analyzed from the failure modes,load-deflection curves,load-bar strain curves,load-slip curves and crack distributions.Results show that the bending failure process of CCSs with a SFRRAC base plate is similar to that of the cast-in-site concrete slab of ordinary concrete and CCS of ordinary concrete by steel bar truss,as all of them went through the plastic phase,elastic plastic phase and failure phase with fully developed cracks and deflection.No sudden breakage or horizontal cracking of the connecting interface between the base plate and concrete topping was observed.The shape of the base plate has a major impact on the bearing capacity of the CCS with the SFRRAC base plate.When calculating the ultimate bearing capacity with the plastic yield line theory,the influence of the base plate shape on the plastic yield line position should be taken into account. 展开更多
关键词 concrete composite slab(CCS) SHAPE steel bar truss bending performance ultimate bearing capacity
下载PDF
Behavior of RC two-way slabs strengthened with CFRP-steel grid under concentrated loading
18
作者 Lu Yiyan Zhu Tao +1 位作者 Li Shan Zhang Haojun 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期331-339,共9页
A novel composite technique of orthogonally bonding carbon fiber-reinforced polymer (CFRP) strips and steel strips is proposed to improve the performance of reinforced concrete (RC) structures based on co-working ... A novel composite technique of orthogonally bonding carbon fiber-reinforced polymer (CFRP) strips and steel strips is proposed to improve the performance of reinforced concrete (RC) structures based on co-working of CFRP strips and steel strips. To verify the effectiveness of the method for strengthening RC two-way slabs, seven flat slabs with the dimensions of i 500 mm x 1 500 mm x 70 mm and an internal reinforcement ratio of 0.22% were prepared and tested until failure under concentrated loading, of which one was unstrengthened, one was strengthened with CFRP strips bonded to its soffit making a grid pattern (termed the CFRP grid), and five were strengthened with a hybrid grid of CFRP strips and steel strips in two orthogonal directions (termed the CFRP-steel grid) to the bottom with steel bolt anchorage. The investigation parameters are the strengthening method, the strip spacing (150, 200, and 250 mm) and the layers of CFRP strips (one layer, two layers, and three layers of CFRP strips are applied for CFRP-steel grid). The experimental results show that the strengthening RC two-way slabs with CFRP-steel grid are effective in delaying concrete cracking and enhancing the load-carrying capacity and deformability in comparison to the CFRP grid strengthening. The yield-line analysis model is proposed to predict the load-carrying capacity of the strengthened slabs. The prediction results are in good agreement with the experimental results. 展开更多
关键词 reinforced concrete two-way slab strengtheningmethod carbon fiber-reinforced polymer (CFRP)-steel grid load-carrying capacity DEFLECTION yield-line
下载PDF
Identification of Connection Flexibility Effects Based on Load Testing of a Steel-Concrete Bridge
19
作者 Czeslaw Machelski Robert Toczkiewicz 《Journal of Civil Engineering and Architecture》 2012年第11期1504-1513,共10页
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe... In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper. 展开更多
关键词 Abstract: In the case of composite girders an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs used commonly in bridge structures does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position which can be used for verification of steel-concrete interaction in real bridge structures rather Composite bridge partial interaction
下载PDF
Engineering punching shear strength of flat slabs predicted by nature-inspired metaheuristic optimized regression system
20
作者 Dinh-Nhat TRUONG Van-Lan TO +1 位作者 Gia Toai TRUONG Hyoun-Seung JANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第4期551-567,共17页
Reinforced concrete(RC)flat slabs,a popular choice in construction due to their flexibility,are susceptible to sudden and brittle punching shear failure.Existing design methods often exhibit significant bias and varia... Reinforced concrete(RC)flat slabs,a popular choice in construction due to their flexibility,are susceptible to sudden and brittle punching shear failure.Existing design methods often exhibit significant bias and variability.Accurate estimation of punching shear strength in RC flat slabs is crucial for effective concrete structure design and management.This study introduces a novel computation method,the jellyfish-least square support vector machine(JS-LSSVR)hybrid model,to predict punching shear strength.By combining machine learning(LSSVR)with jellyfish swarm(JS)intelligence,this hybrid model ensures precise and reliable predictions.The model’s development utilizes a real-world experimental data set.Comparison with seven established optimizers,including artificial bee colony(ABC),differential evolution(DE),genetic algorithm(GA),and others,as well as existing machine learning(ML)-based models and design codes,validates the superiority of the JS-LSSVR hybrid model.This innovative approach significantly enhances prediction accuracy,providing valuable support for civil engineers in estimating RC flat slab punching shear strength. 展开更多
关键词 punching shear strength reinforced concrete flat slabs machine learning jellyfish search support vector machine
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部