期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
EXPERIMENTAL RESEARCH AND NONLINEAR FINITE ELEMENT ANALYSIS ON NEW TYPE JOINT BETWEEN COLUMN AND STEEL BEAM OF CONCRETE-FILLED RECTANGULAR STEEL TUBULAR 被引量:5
1
作者 于旭 宰金珉 刘伟庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期75-82,共8页
Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the ... Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments. 展开更多
关键词 JOINTS cyclic loads finite element method concrete-filled rectangular steel tubular (CFRT)
下载PDF
Seismic Behavior of Diaphragm-Through Connections of Concrete-Filled Square Steel Tubular Columns and H-Shaped Steel Beams 被引量:6
2
作者 荣彬 陈志华 +1 位作者 Apostolos Fafitis 苗纪奎 《Transactions of Tianjin University》 EI CAS 2013年第3期195-201,共7页
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us... Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections. 展开更多
关键词 concrete-filled square steel tubular COLUMN H-shaped steel beam diaphragm-through connection seismic behavior load transfer mechanism
下载PDF
Axial Bearing Capacity of Short FRP Confined Concrete-filled Steel Tubular Columns 被引量:7
3
作者 刘兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期454-458,共5页
The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined wit... The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results. 展开更多
关键词 COLUMNS concrete-filled steel tubes cfst fiber reinforced polymer (FRP) CONFINEMENT bearing capacity.
原文传递
Behavior of concrete and concrete-filled circular steel tubular stub columns at constant high temperatures 被引量:8
4
作者 丁发兴 余志武 《Journal of Central South University of Technology》 EI 2006年第6期726-732,共7页
Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial co... Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references. 展开更多
关键词 CONCRETE concrete-filled steel tubular colunm BEHAVIOR high temperature
下载PDF
Influence of Axial Load Ratio on Shear Behavior of Through-Diaphragm Connections of Concrete-Filled Square Steel Tubular Columns 被引量:2
5
作者 张广泰 韩建红 +1 位作者 荣彬 Apostolos Fafitis 《Transactions of Tianjin University》 EI CAS 2015年第4期341-346,共6页
Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular c... Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections. 展开更多
关键词 through-diaphragm connection concrete-filled square steel tubular COLUMN AXIAL load ratio shearbearing capacity DUCTILITY
下载PDF
In-Plane Creep Buckling of Concrete-Filled Steel Tubular Arches
6
作者 蒋伟 吕大刚 《Transactions of Tianjin University》 EI CAS 2014年第3期168-173,共6页
The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling.... The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling. To investigate the influences of concrete creep on the buckling strength of arches, a theoretical analysis for the creep buckling of CFST circular arches under distributed radial load is performed. The simplified Arutyunyan-Maslov (AM) creep law is used to model the creep behavior of concrete core, and the creep integral operator is introduced. The analytical solutions of the time-dependent buckling strength under the sustained load are achieved and compared with the existing formula based on the age-adjusted effective modulus method (AEMM). Then the solutions are used to determine the influences of the steel ratio and the first loading age on the creep buckling of CFST arches. The results show that the analytical solutions are of good accuracy and applicability. For CFST arches, the steel ratio and the first loading age have significant influences on creep buckling. An approximate log-linear relationship between the decreased degrees of the creep buckling strength and the first loading age is found. For the commonly used parameters, the maximum loss of the buckling strength induced bv concrete creen is close to 40% 展开更多
关键词 ARCH concrete-filled steel tubularcfst concrete creep BUCKLING Arutyunyan-Maslov (AM)creeplaw steel ratio first-loading age
下载PDF
Progressive Collapse Analysis of Concrete-Filled Steel Tubular Frames with Semi-rigid Connections
7
作者 徐嫚 张素梅 +1 位作者 郭兰慧 王玉银 《Transactions of Tianjin University》 EI CAS 2011年第6期461-468,共8页
A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of sim... A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of simulation, which include substructure model, beam element model and solid element model. The comparison results show that the substructure model has a satisfying capability, calculation efficiency and accuracy to predict the concerned joints as well as the overall framework. Based on the substructure model and a kind of semi-rigid connection for concretefilled square hollow section steel column proposed in this paper, the nonlinear dynamic analyses are conducted by the alternate path method. It is found that the removal of the ground inner column brings high-level joint moments and comparatively low-level axial tension forces. The initial stiffness and transmitted ultimate moment of the semi-rigid connection are the main factors that influence the frame behavior, and their lower limit should be guaranteed to resist collapse. Reduced ultimate moment results in drastic displacement and axial force development, which may bring progressive collapse. The higher initial stiffness ensures that the structure has a stronger capacity to resist progressive collapse. 展开更多
关键词 substructure model concrete-filled steel tubular frame semi-rigid connection alternate path method dynamic analysis
下载PDF
Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns 被引量:9
8
作者 卢亦焱 李娜 +1 位作者 李杉 梁鸿骏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2287-2296,共10页
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ... An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures. 展开更多
关键词 concrete-filled steel tube cfst zolumns steel fiber high strength concrete axial load DUCTILITY load capacity
下载PDF
Low cyclic fatigue performance of concrete-filled steel tube columns 被引量:1
9
作者 秦鹏 谭杨 肖岩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4035-4042,共8页
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete... Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle. 展开更多
关键词 concrete-filled steel tubular columns low cyclic fatigue seismic performance failure mode
下载PDF
Concrete-Filled Steel Tube Arch Bridges in China 被引量:70
10
作者 Jielian Zheng Jianjun wang 《Engineering》 2018年第1期143-155,共13页
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee... In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. 展开更多
关键词 concrete-filled steel tube (cfst) ARCH BRIDGE steel-reinforced CONCRETE ARCH BRIDGE CABLE-STAYED fastening-hanging cantileverassembly VACUUM-ASSISTED pouring in-tube CONCRETE Adjusting load by stay cables
下载PDF
Design equations for maximum stress concentration factors for concrete-filled steel tubular K-joints
11
作者 Lei Jiang Yongjian Liu +2 位作者 Neil AHoult Xin Long Wenshuai Wang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI 2024年第5期1001-1022,共22页
Stress concentration factors(SCFs) for welded tubular joints can be decreased by filling the chord with concrete leading to a longer fatigue life. However, there are currently no design formula available in guidelines... Stress concentration factors(SCFs) for welded tubular joints can be decreased by filling the chord with concrete leading to a longer fatigue life. However, there are currently no design formula available in guidelines to predict the SCF of concrete-filled circular hollow section(CFCHS) K-joints, thus limiting their applicability in bridge design. To address this gap,finite element models for CFCHS K-joints were developed and compared against test results to ensure their accuracy. Then, a comprehensive parametric study was conducted to establish relationships between maximum SCFs and four variables: brace-to-chord diameter ratio(β), chord diameter-to-thickness ratio(2γ), brace-to-chord thickness ratio(τ), and the angle between braces and chord(θ). A total of 480 FE models were examined under three loading conditions including brace and chord loading: balanced axial force, chord axial force, and chord bending. Design equations to predict the maximum SCF for CFCHS Kjoints were established by multiple regression analyses of the numerical results. A comparison of maximum SCFs between circular hollow section(CHS) and CFCHS K-joints was made, and it was concluded that average reductions of 42% and 33% in maximum SCFs in CFCHS K-joints at the locations of the chord and brace were found compared to CHS joints for balanced axial force, respectively. Finally, a case study illustrating how to use the proposed equations for fatigue safety verification was presented. 展开更多
关键词 steel tubular joint concrete-filled Fatigue behaviour Design equations Stress concentration factor Numerical analysis
原文传递
Numerical analysis of ultimate strength of concrete filled steel tubular arch bridges 被引量:5
12
作者 谢旭 陈衡治 +1 位作者 李辉 宋世锐 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期859-868,共10页
The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for dete... The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for determining the ultimate strength of CFST structures. The accuracy of this method and the applicability of the stress-strain relationships were validated by comparing different existing confined concrete uniaxial constitutive relationships and experimental results. Comparison of these results indicated that this method using the confined concrete uniaxial stress-strain relationships can be used to calculate the ultimate strength and CFST behavior with satisfactory accuracy. The calculation results are stable and seldom affected by concrete con-stitutive relationships. The method is therefore valuable in the practice of engineering design. Finally, the ultimate strength of an arch bridge with span of 330 m was investigated by the proposed method and the nonlinear behavior was discussed. 展开更多
关键词 Concrete Filled steel tubular cfst Confined concrete Stress-strain relationship Ultimate strength
下载PDF
Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girder 被引量:6
13
作者 ZHANG Zhi-cheng XIE Xu +1 位作者 ZHANG He CHEN Heng-zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期682-692,共11页
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate... A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge. 展开更多
关键词 Ultimate strength Concrete filled steel tubular cfst arch bridge Stiffening girder Fiber model beam element Construction process
下载PDF
大跨CFST拱桥拱轴线形的综合评分法 被引量:1
14
作者 李志磊 杨健 +1 位作者 梁宁一 乔仲发 《低温建筑技术》 2023年第6期55-59,共5页
为探究500m级钢管混凝土拱桥拱轴线形的合理程度,从钢管混凝土拱桥成桥状态的强度、刚度、稳定性和拱轴线形优化方法的操作复杂性角度,对各最优拱轴线形进行拱轴线形评判指标计算对比,提出一种可用于定量评判钢管混凝土拱桥拱轴线形的... 为探究500m级钢管混凝土拱桥拱轴线形的合理程度,从钢管混凝土拱桥成桥状态的强度、刚度、稳定性和拱轴线形优化方法的操作复杂性角度,对各最优拱轴线形进行拱轴线形评判指标计算对比,提出一种可用于定量评判钢管混凝土拱桥拱轴线形的优化程度的方法——钢管混凝土拱桥拱轴线形优化综合评分法(CFST-ARO综合评分法)。文中以波司登大桥为工程实例,对经优化后的抛物线、悬链线及三次样条曲线拱轴线形采用综合评分法进行定量评定。结果表明选用3次样条插值函数优化的拱轴线形内力状态优化效果显著,沿跨径方向应力幅度比其他曲线小且均匀,刚度和稳定性都有所提高;以期为同类型拱桥拱轴线形优化评价提供科学参考。 展开更多
关键词 桥梁工程 cfst-ARO综合评分法 评判指标 钢管混凝土拱桥 合理拱轴线
下载PDF
近断层地震作用下大跨CFST拱桥的动力稳定性 被引量:10
15
作者 邢帆 祝兵 赵灿晖 《西南交通大学学报》 EI CSCD 北大核心 2012年第3期367-372,共6页
为研究大跨度CFST(钢管混凝土)拱桥在近断层地震作用下的动力稳定性能,以主跨132 m的下承式钢管混凝土拱桥为工程背景,以台湾集集地震记录作为横向输入,采用动态增量分析(IDA)方法,对动力失稳临界荷载的确定进行了探讨.为提高IDA的分析... 为研究大跨度CFST(钢管混凝土)拱桥在近断层地震作用下的动力稳定性能,以主跨132 m的下承式钢管混凝土拱桥为工程背景,以台湾集集地震记录作为横向输入,采用动态增量分析(IDA)方法,对动力失稳临界荷载的确定进行了探讨.为提高IDA的分析效率,采用了高性能数值计算并行处理方法.此外,还讨论了加强IDA曲线簇收敛的问题.结果表明:脉冲型近震可导致非线性极值动力失稳,失稳临界荷载明显降低;采用加权平均加速度峰值作为地震强度指标,能显著改善IDA曲线簇的离散性,有利于揭示近断层地震对钢管混凝土拱桥造成动力失稳的特点. 展开更多
关键词 钢管混凝土拱桥 近断层地震 地震响应 动力稳定性
下载PDF
弹塑性钢阻尼器用于大跨度CFST拱桥的减震控制研究 被引量:4
16
作者 王浩 周锐 +2 位作者 程怀宇 宗周红 王春峰 《振动与冲击》 EI CSCD 北大核心 2013年第12期116-121,共6页
弹塑性钢阻尼器具有良好的减震效果,但目前的研究和应用主要集中在房建领域。以主跨368m的茅草街大桥为研究对象,进行了弹塑性钢阻尼器用于大跨度钢管混凝土拱桥地震响应的减震控制研究,采用非线性时程分析法进行了阻尼器关键参数的敏... 弹塑性钢阻尼器具有良好的减震效果,但目前的研究和应用主要集中在房建领域。以主跨368m的茅草街大桥为研究对象,进行了弹塑性钢阻尼器用于大跨度钢管混凝土拱桥地震响应的减震控制研究,采用非线性时程分析法进行了阻尼器关键参数的敏感性分析,研究了不同屈服荷载、不同弹性刚度及不同空间布设阻尼器的减震效果,最后重点分析了行波效应对弹塑性钢阻尼器减震效果的影响。结果表明,对于该中承式钢管混凝土系杆拱桥,弹塑性钢阻尼器的减震效果明显;综合考虑各部位的地震响应,在主梁各支承间均匀布设阻尼器为最佳布置方式;考虑行波效应后,阻尼器的减震效果更佳。 展开更多
关键词 钢管混凝土拱桥 减震控制 弹塑性钢阻尼器 非线性时程分析 行波效应
下载PDF
侧向冲击后钢管混凝土柱剩余轴压承载力研究
17
作者 付朝江 高颖 +4 位作者 陈华艳 罗才松 王碧珍 林友峰 张泽群 《建筑钢结构进展》 CSCD 北大核心 2024年第4期57-69,共13页
为研究钢管混凝土柱受侧向冲击后的剩余承载力,进行了冲击后钢管混凝土柱的轴压试验,运用ABAQUS有限元软件对冲击后钢管混凝土柱轴压试验进行了数值模拟,并验证了有限元模型的合理性。分析轴压过程中典型钢管混凝土柱的受力性能,研究混... 为研究钢管混凝土柱受侧向冲击后的剩余承载力,进行了冲击后钢管混凝土柱的轴压试验,运用ABAQUS有限元软件对冲击后钢管混凝土柱轴压试验进行了数值模拟,并验证了有限元模型的合理性。分析轴压过程中典型钢管混凝土柱的受力性能,研究混凝土强度等级、冲击质量、冲击高度、钢管强度等级、冲击位置、边界条件和长径比对受冲击后钢管混凝土柱剩余承载力的影响。结果表明:混凝土强度等级对剩余承载力影响较小,当从C50增大C65时,剩余承载力仅提高了1.44%;当冲击质量从330 kg增大到630 kg时,剩余承载力减小了10.64%;冲击高度由4 m增大到7 m时,剩余承载力减小了10.15%;采用Q420钢材的钢管混凝土柱的剩余承载力比采用Q235钢材的钢管混凝土柱的相应值提高了39.54%;冲击位置越靠近跨中,剩余承载力越小;随着边界条件的自由度增加,剩余承载力减小。给出了冲击后钢管混凝土柱的剩余承载力公式。 展开更多
关键词 钢管混凝土柱 有限元模拟 剩余承载力 冲击作用 轴压试验
原文传递
Expansion performance and self-stressing behavior of CFST columns considering concrete creep and shrinkage effect 被引量:5
18
作者 Xu Li Zeng Hao Pan Jinlong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期52-58,共7页
Expansive concrete is used in the steel tube of Concrete-filled steel tubular(CFST)columns to solve the problem of steel-to-concrete debonding.Self-stress is generated between concrete and steel plate due to concrete ... Expansive concrete is used in the steel tube of Concrete-filled steel tubular(CFST)columns to solve the problem of steel-to-concrete debonding.Self-stress is generated between concrete and steel plate due to concrete expansion,which can effectively improve the mechanical performance of CFST columns.Deformation tests were conducted on concrete and CFST columns,respectively.The free deformation of concrete and circumferential deformation of steel tubes were measured and analyzed.A calculation method was proposed to evaluate the hoop strain,self-stress and creep deformation of the CFST columns.The test and calculation results indicate that the proper addition of expansion agent in the internal concrete can keep concrete expansive and generate self-stresses for a long time.The expansion and self-stresses prevent the debonding between the steel tube and the internal concrete.Increasing the dosage of expansive agents and reducing the curing age both increase the expansive deformation and self-stress of CFST columns.Increasing the tube thickness reduces the expansive deformation and increases the initial self-stress of CFST columns. 展开更多
关键词 concrete-filled steel tubular(cfst) expansive deformation SELF-STRESS CREEP
下载PDF
A simplified model to predict blast response of CFST columns 被引量:1
19
作者 ZHANG Jun-hao CHEN Bin JIANG Shi-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期683-691,共9页
In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers t... In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers the non-uniform distribution of blast loads on real column and the axial load-bending moment(P-M) interaction of CFST columns.Results of the SDOF analysis compare well with the experimental data reported in open literature and the values from finite element modeling(FEM) using the program LS-DYNA.Further comparisons between the results of SDOF and FEM analysis show that the proposed model is effective to predict the dynamic response of CFST columns with different blast conditions and column details.Also,it is found that the maximum responses of the columns are overestimated when ignoring the non-uniformity of blast loads,and that neglecting the effect of P-M interaction underestimates the maximum response of the columns with large axial load ratio against close range blast.The proposed SDOF model can be used in the design of the blast-loaded CFST columns. 展开更多
关键词 concrete-filled steel tube cfst columns dynamic response single-degree-of-freedom (SDOF) analysis non-uniformblast loads axial load-bending moment (P-M) interaction
下载PDF
考虑梁端约束CFST柱-RC梁节点耐火性能研究
20
作者 王丹丹 杨有福 《防灾减灾工程学报》 CSCD 北大核心 2017年第3期405-413,共9页
针对火灾下钢管混凝土(CFST)柱-钢筋混凝土(RC)梁节点的力学性能,建立了火灾下节点温度场和力学场分析的有限元模型,并利用已有试验结果验证了有限元模型的有效性。研究了材料参数、几何参数、荷载参数及梁端约束刚度对CFST柱-RC梁节点... 针对火灾下钢管混凝土(CFST)柱-钢筋混凝土(RC)梁节点的力学性能,建立了火灾下节点温度场和力学场分析的有限元模型,并利用已有试验结果验证了有限元模型的有效性。研究了材料参数、几何参数、荷载参数及梁端约束刚度对CFST柱-RC梁节点耐火极限的影响,重点考察了梁端轴向和转动约束刚度对火灾下CFST柱-RC梁节点弯矩-转角关系、转动刚度和截面内力分布规律的影响。结果表明,CFST柱-RC梁节点在火灾下有两种破坏形态:柱破坏和梁板破坏,梁端约束对CFST柱-RC梁节点耐火极限的影响较小,但梁端轴向约束对火灾下CFST柱-RC梁节点弯矩—转角关系、转动刚度和截面内力分布规律的影响显著。 展开更多
关键词 钢管混凝土(cfst)柱 钢筋混凝土(RC)梁 节点 耐火性能 有限元分析
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部