Lithium-sulfur(Li-S)batteries have attracted increased interest because of the high theoretical energy density,low cost,and environmental friendliness.Conducting polymers(CPs),as one of the most promising materials us...Lithium-sulfur(Li-S)batteries have attracted increased interest because of the high theoretical energy density,low cost,and environmental friendliness.Conducting polymers(CPs),as one of the most promising materials used in Li-S batteries,can not only facilitate electron transfer and buffer the large volumetric change of sulfur benefiting from their porous structure and excellent flexibility,but also enable stronger physical/chemical adsorption capacity toward polysulfides(LiPSs)when doped with abundant heteroatoms to promote the sulfur redox kinetics and achieve the high sulfur loading.This review firstly introduces the properties of various CPs including structural CPs(polypyrrole(PPy),polyaniline(PANi),polyethylene dioxothiophene[PEDOT])and compound CPs(polyethylene oxide(PEO),polyvinyl alcohol(PVA)and poly(acrylic acid)[PAA]),and their application potential in Li-S batteries.Furthermore,the research progress of various CPs in different components(cathode,separator,and interlayer)of Li-S batteries is systematically summarized.Finally,the application perspective of the CPs in Li-S batteries as a potential guidance is comprehensively discussed.展开更多
A physical model of series of the conductivity on chain and the interchain conductivitybetween chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced...A physical model of series of the conductivity on chain and the interchain conductivitybetween chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might bedue to increasing of the interchain conductivity between chains along the elongation direction afterdrawing processes if the conductivity on chain is assumed much larger than that of the interchainconductivity between chains. According to this model, it is expected that the temperaturedependence of conductivity measured by four-probe method for stretched conducting polymers iscontrolled by a variation of the interchain conductivity between chains with temperature, whichcan be used to explain that a metallic temperature dependence of conductivity for stretchedconducting polymers is not observed although the conductivity along the elongation direction isenhanced by two or three orders of magnitude.展开更多
The infrared emissivity of conducting polymers in 8—20μm and at 50—150℃ in the direction of normal line has been measured as a function of wavelength, conductivity at room temperature, counterion, doping levels, m...The infrared emissivity of conducting polymers in 8—20μm and at 50—150℃ in the direction of normal line has been measured as a function of wavelength, conductivity at room temperature, counterion, doping levels, measuring temperature and thickness of sample.展开更多
Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC...Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.展开更多
Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspo...Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run.展开更多
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we...Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.展开更多
There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power.Nanostructured conducting poly...There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power.Nanostructured conducting polymers have emerged as promising candidates for this technology due to their excellent stability with low redox potential,high conductivity,and selectivity endowed by chemical functionalization.However,it remains challenging to develop cost-effective and large-scale assembly approaches for functionalized conducting polymers in the practical fabrication of electronic devices.Here,we reported a straightforward waferscale assembly of nanostructured hexafluoroisopropanol functionalized poly(3,4-ethylenedioxythiophene)(PEDOT-HFIP)on smooth substrates.This approach is template-free,solution-processed,and adaptable to conductive and nonconductive substrates.By this approach,the nanostructured PEDOT-HFIPs could be easily integrated onto interdigitated electrodes with intimate ohmic contact.At the optimized space-to-volume ratio,we demonstrated a low-power,sensitive,and selective nerve agent sensing technology using this platform by detecting sarin vapor with a limit of detection(LOD)of 10 ppb and signal strength of 400 times the water interference at the same concentration,offering significant advantages over existing similar technologies.We envision that its easy scale-up,micro size,small power consumption,and combination of high sensitivity and selectivity make it attractive for various wearable platforms.展开更多
Conducting polymers offer attractive mixed ionic-electronic conductivity,tunable interfacial barrier with metal,tissue matchable softness,and versatile chemical functionalization,making them robust to bridge the gap b...Conducting polymers offer attractive mixed ionic-electronic conductivity,tunable interfacial barrier with metal,tissue matchable softness,and versatile chemical functionalization,making them robust to bridge the gap between brain tissue and electronic circuits.This review focuses on chemically revised conducting polymers,combined with their superior and controllable electrochemical performance,to fabricate long-term bioelectronic implants,addressing chronic immune responses,weak neuron attraction,and long-term electrocommunication instability challenges.Moreover,the promising progress of zwitterionic conducting polymers in bioelectronic implants(≥4 weeks stable implantation)is highlighted,followed by a comment on their current evolution toward selective neural coupling and reimplantable function.Finally,a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani...Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.展开更多
Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from...Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%.展开更多
Soft electronics featuring exceptional mechanical compliance and excellent electrical performance hold great promise for applications in soft robotics,artificial intelligence,bio-integrated electronics,and wearable el...Soft electronics featuring exceptional mechanical compliance and excellent electrical performance hold great promise for applications in soft robotics,artificial intelligence,bio-integrated electronics,and wearable electronics.Intrinsically stretchable and conductive materials are crucial for soft electronics,enabling large-area and scalable fabrication,high device density,and good mechanical compliance.Conducting polymers are inherently stretchable and conductive.They can be precisely synthesized from vastly available building blocks,and thus they provide a fruitful platform for fabricating soft electronics.However,amorphous bulk-phase conducting polymers typically exhibit poor mechanical and electrical characteristics.Consequently,it is highly desirable to develop novel engineering approaches to overcome the intrinsic limitations of conducting polymers.In recent years,numerous engineering strategies have been developed to enhance their performances in soft electronic devices via constructing various nanostructures.In this review,we first summarize several unique methodologies to fabricate conducting polymer-based nanostructures.We then discuss how nanoscale engineering approaches can improve several crucial parameters,including electrical conductivity,stretchability,sensitivity,and self-healing property of conducting polymers.Moreover,we also discuss device-level integration of conducting polymer-based nanostructures with other materials for applications in skin-inspired electronics and bio-integrated electronics.Finally,we provide perspectives on challenges and future directions in engineering nanostructured conducting polymers for soft electronics.展开更多
In recent years,as a new class of two-dimensional polymer,covalent organic frameworks(COFs) have attracted intensive attention and developed rapidly.This review provides an overview of a type of COFs which can be ut...In recent years,as a new class of two-dimensional polymer,covalent organic frameworks(COFs) have attracted intensive attention and developed rapidly.This review provides an overview of a type of COFs which can be utilized as organic semiconductors.Carefully choosing monomers as the building blocks will bestow different types of semiconducting character on COFs.We summarize the p-type,n-type and ambipolar semiconducting COFs and highlight the effects of π-functional building blocks on the photoconductive behaviors of the semiconducting COFs.展开更多
The capacitance performances of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) supramolecular hydrogels have been investigated systematically. The materials show a specific capacitance of 67 ...The capacitance performances of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) supramolecular hydrogels have been investigated systematically. The materials show a specific capacitance of 67 F/g and display excellent rate capability at the scan rate as high as 5000 m V/s in the cyclic voltammogram measurements, accompanied by good cycle stability. On the basis of the measurements of the microscale morphologies, specific areas and electrical conductivities, the mechanisms for the improvement of the electrochemical properties are discussed and ascribed to the novel porous microstructures of the hydrogels and the synergetic effect of the rigid PEDOT and soft PSS components. Furthermore, polyaniline(PAn) is compounded with the PEDOT-PSS hydrogels through an interfacial polymerization process, endowing the hydrogel materials with a higher specific capacitance of 160 F/g at the scan rate of 5000 m V/s. The significance of this work lies in the demonstration of a novel method to solve the problems of conducting polymers in electrochemical applications.展开更多
1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accompl...1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...展开更多
Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mech...Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mechanical stability, light weight, low cost and ease in material processing. Compared with bulk CPs, nanostructured CPs possess higher electrical conductivity, larger surface area, superior electro- chemical activity, which make them suitable for various ap- plications. Hybridization of CPs with other nanomaterials has obtained promising functional nanocomposites and achieved improved performance in different areas, such as energy sto- rage, sensors, energy harvesting and protection applications. In this review, recent progress on nanostructured CPs and their composites is summarized from research all over the world in more than 400 references, especially from the last three years. The relevant synthesizing experiences are outlined and abundant application examples are illustrated. The ap- proaches of production of nanostructured CPs are discussed and the efficacy and benefits of newest trends for the pre- paration of multifunctional nanomaterials/nanocomposites are presented. Mechanism of their electrical conductivity and the ways to tailor their properties are investigated. The re- maining challenges in developing better CPs based nanoma- terials are also elaborated.展开更多
Intrinsically conducting polymers(ICPs),such as polyacetylene,polyaniline,polypyrrole,polythiophene,and poly(3,4-ethylenedioxythiophene)(PEDOT),can have important application in flexible electronics owing to their uni...Intrinsically conducting polymers(ICPs),such as polyacetylene,polyaniline,polypyrrole,polythiophene,and poly(3,4-ethylenedioxythiophene)(PEDOT),can have important application in flexible electronics owing to their unique merits including high conductivity,high mechanical flexibility,low cost,and good biocompatibility.The requirements for their application in flexible electronics include high conductivity and appropriate mechanical properties.The conductivity of some ICPs can be enhanced through a postpolymerization treatment,the so-called“secondary doping.”A conducting polymer film with high conductivity can be used as flexible electrode and even as flexible transparent electrode of optoelectronic devices.The application of ICPs as stretchable electrode requires high mechanical stretchability.The mechanical stretchability of ICPs can be improved through blending with a soft polymer or plasticization.Because of their good biocompatibility,ICPs can be modified as dry electrode for biopotential monitoring and neural interface.In addition,ICPs can be used as the active material of strain sensors for healthcare monitoring,and they can be adopted to monitor food processing,such as the fermentation,steaming,storage,and refreshing of starch-based food because of the resistance variation caused by the food volume change.All these applications of ICPs are covered in this review article.展开更多
We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta_2O_5) surface as cathode films for solid tantalum ...We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta_2O_5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta_2O_5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta_2O_5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.展开更多
We report the current-voltage (I-V) characteristics of individual polypyrrole nanotubes and poly(3,4- ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex s...We report the current-voltage (I-V) characteristics of individual polypyrrole nanotubes and poly(3,4- ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent I-V curves. It is found that the I-V data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression) could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition, similar I--V characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.展开更多
基金supported by the National Natural Science Foundation of China(51978569 and 52172097)Key Research and Development Program of Shaanxi Province(2022GY-301)+4 种基金Basic and Public Projects of Zhejiang Province(LGF21E020001)China Postdoctoral Science Foundation(2020 M683467)Basic Research Operating Expenses of XJTU(xzy022022041)China Scholarship Council foundation(201906285020 and 202206280212)support from Faraday Institution LiSTAR Programme(EP/S003053/1,Grant FIRG014).
文摘Lithium-sulfur(Li-S)batteries have attracted increased interest because of the high theoretical energy density,low cost,and environmental friendliness.Conducting polymers(CPs),as one of the most promising materials used in Li-S batteries,can not only facilitate electron transfer and buffer the large volumetric change of sulfur benefiting from their porous structure and excellent flexibility,but also enable stronger physical/chemical adsorption capacity toward polysulfides(LiPSs)when doped with abundant heteroatoms to promote the sulfur redox kinetics and achieve the high sulfur loading.This review firstly introduces the properties of various CPs including structural CPs(polypyrrole(PPy),polyaniline(PANi),polyethylene dioxothiophene[PEDOT])and compound CPs(polyethylene oxide(PEO),polyvinyl alcohol(PVA)and poly(acrylic acid)[PAA]),and their application potential in Li-S batteries.Furthermore,the research progress of various CPs in different components(cathode,separator,and interlayer)of Li-S batteries is systematically summarized.Finally,the application perspective of the CPs in Li-S batteries as a potential guidance is comprehensively discussed.
基金This work was supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.
文摘A physical model of series of the conductivity on chain and the interchain conductivitybetween chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might bedue to increasing of the interchain conductivity between chains along the elongation direction afterdrawing processes if the conductivity on chain is assumed much larger than that of the interchainconductivity between chains. According to this model, it is expected that the temperaturedependence of conductivity measured by four-probe method for stretched conducting polymers iscontrolled by a variation of the interchain conductivity between chains with temperature, whichcan be used to explain that a metallic temperature dependence of conductivity for stretchedconducting polymers is not observed although the conductivity along the elongation direction isenhanced by two or three orders of magnitude.
文摘The infrared emissivity of conducting polymers in 8—20μm and at 50—150℃ in the direction of normal line has been measured as a function of wavelength, conductivity at room temperature, counterion, doping levels, measuring temperature and thickness of sample.
文摘Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.
基金the National Natural Science Foundation of China(51973157)the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(2020T130469)+1 种基金the China Postdoctoral Science Foundation Grant(2019 M651047)the Science and Technology Plans of Tianjin(19PTSYJC00010)for their financial support。
文摘Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2C2004109)the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0020612,2022 The Competency Development Program for Industry Specialist).
文摘Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
基金financial support from the National Natural Science Foundation of China(Nos.21474014 and 22175111)Z.G.thanks financial support from the National Natural Science Foundation of China(No.21704013)+1 种基金China Postdoctoral Science Foundation(No.2017M611416)R.B.W.thanks for financial support from the National Postdoctoral Program for Innovative Talents(No.BX201700044).
文摘There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power.Nanostructured conducting polymers have emerged as promising candidates for this technology due to their excellent stability with low redox potential,high conductivity,and selectivity endowed by chemical functionalization.However,it remains challenging to develop cost-effective and large-scale assembly approaches for functionalized conducting polymers in the practical fabrication of electronic devices.Here,we reported a straightforward waferscale assembly of nanostructured hexafluoroisopropanol functionalized poly(3,4-ethylenedioxythiophene)(PEDOT-HFIP)on smooth substrates.This approach is template-free,solution-processed,and adaptable to conductive and nonconductive substrates.By this approach,the nanostructured PEDOT-HFIPs could be easily integrated onto interdigitated electrodes with intimate ohmic contact.At the optimized space-to-volume ratio,we demonstrated a low-power,sensitive,and selective nerve agent sensing technology using this platform by detecting sarin vapor with a limit of detection(LOD)of 10 ppb and signal strength of 400 times the water interference at the same concentration,offering significant advantages over existing similar technologies.We envision that its easy scale-up,micro size,small power consumption,and combination of high sensitivity and selectivity make it attractive for various wearable platforms.
基金supported by NSFC(22175111,21474014,21704013,and 51903149)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning(TP2019043)the Program of Shanghai Academic/Technology Research Leader(20XD1400100).
文摘Conducting polymers offer attractive mixed ionic-electronic conductivity,tunable interfacial barrier with metal,tissue matchable softness,and versatile chemical functionalization,making them robust to bridge the gap between brain tissue and electronic circuits.This review focuses on chemically revised conducting polymers,combined with their superior and controllable electrochemical performance,to fabricate long-term bioelectronic implants,addressing chronic immune responses,weak neuron attraction,and long-term electrocommunication instability challenges.Moreover,the promising progress of zwitterionic conducting polymers in bioelectronic implants(≥4 weeks stable implantation)is highlighted,followed by a comment on their current evolution toward selective neural coupling and reimplantable function.Finally,a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
基金supported by the Enhancement of Performance and Production Technology of Lithium-based Next-generation Rechargeable Battery(project number 20012371)from the Ministry of Trade,Industry and Energy(MOTIE)of Koreasupported by project number KS2322-20(A Study on the Convergence Materials for Off-Grid Energy Conversion/Storage Integrated Devices)of the Korea Research Institute of Chemical Technology(KRICT).
文摘Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
基金the competence centre Fun Mat-II funded by the Swedish Agency for Innovation Systems(Vinnova,grant no 2016-05156)Swedish Energy Agency(project no 42022-1)+3 种基金Swedish Research Council(VR 2021-04427,VR 2019-05577,VR 2016–05990)the Centre in Nanoscience and Technology(CeNano,Linkoping Institute of Technology(LiTH),Linkoping University,2020,2021)the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University(Faculty Grant SFO-Mat-Li U No.2009-00971)the Knut and Alice Wal enberg Foundation(H2O2,KAW 2018.0058),for support
文摘Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%.
基金funds from the National Key R&D Program of China(No.2017YFA0207301)the National Natural Science Foundation of China(No.21875235)the Fundamental Research Funds for the Central Universities.
文摘Soft electronics featuring exceptional mechanical compliance and excellent electrical performance hold great promise for applications in soft robotics,artificial intelligence,bio-integrated electronics,and wearable electronics.Intrinsically stretchable and conductive materials are crucial for soft electronics,enabling large-area and scalable fabrication,high device density,and good mechanical compliance.Conducting polymers are inherently stretchable and conductive.They can be precisely synthesized from vastly available building blocks,and thus they provide a fruitful platform for fabricating soft electronics.However,amorphous bulk-phase conducting polymers typically exhibit poor mechanical and electrical characteristics.Consequently,it is highly desirable to develop novel engineering approaches to overcome the intrinsic limitations of conducting polymers.In recent years,numerous engineering strategies have been developed to enhance their performances in soft electronic devices via constructing various nanostructures.In this review,we first summarize several unique methodologies to fabricate conducting polymer-based nanostructures.We then discuss how nanoscale engineering approaches can improve several crucial parameters,including electrical conductivity,stretchability,sensitivity,and self-healing property of conducting polymers.Moreover,we also discuss device-level integration of conducting polymer-based nanostructures with other materials for applications in skin-inspired electronics and bio-integrated electronics.Finally,we provide perspectives on challenges and future directions in engineering nanostructured conducting polymers for soft electronics.
基金the support from National Program for Thousand Young Talents of Chinathe National Natural Science Foundation of China(No.21544001)Fudan University
文摘In recent years,as a new class of two-dimensional polymer,covalent organic frameworks(COFs) have attracted intensive attention and developed rapidly.This review provides an overview of a type of COFs which can be utilized as organic semiconductors.Carefully choosing monomers as the building blocks will bestow different types of semiconducting character on COFs.We summarize the p-type,n-type and ambipolar semiconducting COFs and highlight the effects of π-functional building blocks on the photoconductive behaviors of the semiconducting COFs.
基金financially supported by the National Natural Science Foundation of China(Nos.21174059 and 21374046)China Postdoctoral Science Foundation(No.2013M530249)+1 种基金Program for Changjiang Scholars and Innovative Research Teams in Universities,Open Project of State Key Laboratory of Superamolecular Structure and Materials(No.SKLSSM201416)the Testing Foundation of Nanjing University
文摘The capacitance performances of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) supramolecular hydrogels have been investigated systematically. The materials show a specific capacitance of 67 F/g and display excellent rate capability at the scan rate as high as 5000 m V/s in the cyclic voltammogram measurements, accompanied by good cycle stability. On the basis of the measurements of the microscale morphologies, specific areas and electrical conductivities, the mechanisms for the improvement of the electrochemical properties are discussed and ascribed to the novel porous microstructures of the hydrogels and the synergetic effect of the rigid PEDOT and soft PSS components. Furthermore, polyaniline(PAn) is compounded with the PEDOT-PSS hydrogels through an interfacial polymerization process, endowing the hydrogel materials with a higher specific capacitance of 160 F/g at the scan rate of 5000 m V/s. The significance of this work lies in the demonstration of a novel method to solve the problems of conducting polymers in electrochemical applications.
文摘1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...
基金supported by the National Institute of Food and Agriculture,USDA and AU-IGP award
文摘Conducting polymers (CPs) have been widely investigated due to their extraordinary advantages over the traditional materials, including wide and tunable electrical conductivity, facile production approach, high mechanical stability, light weight, low cost and ease in material processing. Compared with bulk CPs, nanostructured CPs possess higher electrical conductivity, larger surface area, superior electro- chemical activity, which make them suitable for various ap- plications. Hybridization of CPs with other nanomaterials has obtained promising functional nanocomposites and achieved improved performance in different areas, such as energy sto- rage, sensors, energy harvesting and protection applications. In this review, recent progress on nanostructured CPs and their composites is summarized from research all over the world in more than 400 references, especially from the last three years. The relevant synthesizing experiences are outlined and abundant application examples are illustrated. The ap- proaches of production of nanostructured CPs are discussed and the efficacy and benefits of newest trends for the pre- paration of multifunctional nanomaterials/nanocomposites are presented. Mechanism of their electrical conductivity and the ways to tailor their properties are investigated. The re- maining challenges in developing better CPs based nanoma- terials are also elaborated.
基金grateful to the Ministry of Education of Singapore for the research grant of R-284-000-197-114.
文摘Intrinsically conducting polymers(ICPs),such as polyacetylene,polyaniline,polypyrrole,polythiophene,and poly(3,4-ethylenedioxythiophene)(PEDOT),can have important application in flexible electronics owing to their unique merits including high conductivity,high mechanical flexibility,low cost,and good biocompatibility.The requirements for their application in flexible electronics include high conductivity and appropriate mechanical properties.The conductivity of some ICPs can be enhanced through a postpolymerization treatment,the so-called“secondary doping.”A conducting polymer film with high conductivity can be used as flexible electrode and even as flexible transparent electrode of optoelectronic devices.The application of ICPs as stretchable electrode requires high mechanical stretchability.The mechanical stretchability of ICPs can be improved through blending with a soft polymer or plasticization.Because of their good biocompatibility,ICPs can be modified as dry electrode for biopotential monitoring and neural interface.In addition,ICPs can be used as the active material of strain sensors for healthcare monitoring,and they can be adopted to monitor food processing,such as the fermentation,steaming,storage,and refreshing of starch-based food because of the resistance variation caused by the food volume change.All these applications of ICPs are covered in this review article.
基金supported by the National Science Foundation of China(NSFC)(No.61101029)the Fundamental Research Funds for the Central Universities(No.ZYGX2010J057)+1 种基金the national defense pre-research foundation(No.9140A23070111DZ02042)A Plan for Supporting the New Century Talents(No.NCET-12-0091)
文摘We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta_2O_5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta_2O_5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta_2O_5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.
基金Project supported by the National Natural Science Foundation of China (Grant No 10604038)the Program for New Century Excellent Talents in University of China (Grant No NCET-07-0472)
文摘We report the current-voltage (I-V) characteristics of individual polypyrrole nanotubes and poly(3,4- ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent I-V curves. It is found that the I-V data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression) could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition, similar I--V characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.