期刊文献+
共找到985篇文章
< 1 2 50 >
每页显示 20 50 100
70 Gbps PAM-4850-nm oxide-confined VCSEL without equalization and pre-emphasis 被引量:1
1
作者 Anjin Liu Bao Tang +1 位作者 Zhiyong Li Wanhua Zheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期5-7,共3页
Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnect... Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used. 展开更多
关键词 RETURN confined fibers
下载PDF
Influence of confined water on the limit support pressure of tunnel face in weakly water-rich strata
2
作者 LI Yun-fa WU Guo-jun +2 位作者 CHEN Wei-zhong YUAN Jing-qiang HUO Meng-zhe 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2844-2859,共16页
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine... In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality. 展开更多
关键词 weakly water-rich strata confined aquifer limit support pressure finite element method multiple linear regression
下载PDF
Strong shock propagation for the finite-source circular blast in a confined domain
3
作者 Qihang MA Kaileong CHONG +1 位作者 Bofu WANG Quan ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1071-1084,共14页
The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s... The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law. 展开更多
关键词 explosion CONFINEMENT main shock frequency
下载PDF
Quantum confinement of carriers in the type-I quantum wells structure
4
作者 Xinxin Li Zhen Deng +4 位作者 Yang Jiang Chunhua Du Haiqiang Jia Wenxin Wang Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期553-558,共6页
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However... Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance. 展开更多
关键词 energy band quantum confinement type-I quantum wells low-dimensional structures
原文传递
Influence of Confined Concrete Models on the Seismic Response of RC Frames
5
作者 Hüseyin Bilgin Bredli Plaku 《Structural Durability & Health Monitoring》 EI 2024年第3期197-222,共26页
In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified K... In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to thepre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in thecurrent building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelasticresponse of the building frame is modelled by considering the plastic hinges formed on each beam and columnelement for different concrete classes and stirrups spacings. The models are subjected to non-linear static analyses.The differences between confined concrete models are comparatively investigated at both reinforced concretemember and system levels. Based on the results of the comparative analysis, it is revealed that the column behaviouris mostly influenced by the choice of model, due to axial loads and confinement effects, while the beams areless affected, and also it is observed that the differences exhibited in the moment-curvature response of columncross-sections do not significantly affect the overall behaviour of the global system. This highlights the critical roleof model selection relative to the concrete strength and stirrup spacing of the member. 展开更多
关键词 Non-linear static analysis moment-curvature relationships plastic hinges concrete confinement models seismic action
下载PDF
Boundary Element Analysis (Laplace Transform Solution) of Groundwater Unsteady Flow to a Multiple Well System in a Confined Aquifer 被引量:1
6
作者 Zhu Xueyu Xie Chunhong Zou Zeyuan Nanjing University, Nanjing, Jiangsu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1990年第1期93-99,共7页
The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic diff... The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion. 展开更多
关键词 of Groundwater Unsteady Flow to a Multiple well System in a confined Aquifer Laplace Transform Solution Boundary Element Analysis FLOW
下载PDF
Fluctuation pressure on a bio-membrane confined within a parabolic potential well 被引量:2
7
作者 L. B. Freund 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1180-1185,共6页
A compliant bio-membrane with a nominally fiat reference configuration is prone to random transverse deflections when placed in water, due primarily to the Brownian motion of the water molecules. On the average, these... A compliant bio-membrane with a nominally fiat reference configuration is prone to random transverse deflections when placed in water, due primarily to the Brownian motion of the water molecules. On the average, these fluctuations result in a state of thermodynamic equilibrium between the entropic energy of the water and the total free en- ergy of the membrane. When the membrane is in close proximity to a parallel surface, that surface restricts the fluctuations of the membrane which, in turn, results in an increase in its free energy. The amount of that increase depends on the degree of confinement, and the resulting gradient in free energy with degree of confinement implies the existence of a confining pressure. In the present study, we assume that the confinement is in the form of a continuous parabolic po- tential well resisting fluctuation. Analysis leads to a closed form expression for the mean pressure resulting from this confinement, and the results are discussed within the broader context of results in this area. In particular, the results provide insights into the roles of membrane stiffness, number of degrees of freedom in the model of the membrane and other system parameters. 展开更多
关键词 Statistical mechanics Membrane fluctuations Parabolic confinement. Confining pressure
下载PDF
Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels 被引量:10
8
作者 Bei Jiang Zhongxin Xin +4 位作者 Xiufeng Zhang Yusong Deng Mingzi Wang Shidong Li Wentao Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期829-841,共13页
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic... Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled. 展开更多
关键词 High-stress tunnel confined concrete arch Section shape Mechanical properties Design method
下载PDF
A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well vertical-cavity surface-emitting laser
9
作者 关宝璐 任秀娟 +3 位作者 李川 李硕 史国柱 郭霞 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期222-225,共4页
A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold curre... A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved, which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed opera- tion. While under continuous-wave (CW) operation, the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from -12°C to 96 °C and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current. 展开更多
关键词 vertical-cavity surface-emitting laser strained quantum-well oxide confinement
原文传递
Summary of the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)
10
作者 王志斌 仇志勇 +1 位作者 王璐 陈伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期1-11,共11页
This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.Th... This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper. 展开更多
关键词 CMCFTS magnetically confined fusion THEORY simulation conference report
下载PDF
Liquid–liquid phase transition in confined liquid titanium
11
作者 张迪 段云瑞 +6 位作者 郑培儒 马英杰 钱俊平 李志超 黄建 蒋妍彦 李辉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期391-398,共8页
We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liqu... We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space. 展开更多
关键词 TITANIUM layering transition liquid–liquid phase transition confined space
原文传递
Steady-State Radial Flow Modeling through the Production Well in the Confined Aquifer of Monzoungoudo,Benin
12
作者 Francois de Paule Codo Babilas Hountondji Martin P.Aina 《Open Journal of Fluid Dynamics》 2019年第2期107-118,共12页
This study aims to develop a mathematical analysis for one-dimensional modeling of a radial flow through a production well drilled in a confined aquifer, in the case of steady-state flow conditions. An analytical solu... This study aims to develop a mathematical analysis for one-dimensional modeling of a radial flow through a production well drilled in a confined aquifer, in the case of steady-state flow conditions. An analytical solution has derived from that expression for estimation of drawdowns according to different flowrates. Through that process, the evaluation of static pressure, the calculation of hydraulic charge due to the waterflow through the well is evaluated, the drawdowns curves are drawn and at last, the obtained curves are analyzed. The curves obtained for the different flow rates have an asymptotic direction, the axis of the hydraulic charges. The variation of the hydraulic charge depends on the radial distance for different flow rates. The P point, is a common point of all curves obtained for different production flowrates in the well. This point is where the well production flowrate is optimum for the optimal hydraulic charge. 展开更多
关键词 confined Aquifer Production well Radial Flow Steady-State Flow DRAWDOWN Cone of Depression
下载PDF
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion 被引量:4
13
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure Shear strength
下载PDF
Single-atom Pt on carbon nanotubes for selective electrocatalysis 被引量:2
14
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT ELECTROCATALYSIS hydrogen PLATINUM single atom catalysts
下载PDF
Wetting sub-nanochannels via ionic hydration effect for improving charging dynamics 被引量:1
15
作者 Yayun Shi Xiaoli Zhao +5 位作者 Qihang Liu Zhenghui Pan Congcong Liu Shanyi Zhu Zhijun Zuo Xiaowei Yang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期473-480,共8页
The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is chal... The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times. 展开更多
关键词 Sub-nanochannels Ionic hydration Ionic transport SUPERCAPACITORS confined water
下载PDF
Mechanistic investigation on Ag-Cu_(2)O in electrocatalytic CO_(2) to CH_(4) by in situ/operando spectroscopic and theoretical analysis 被引量:1
16
作者 Min Sun Luxiao Zhang +10 位作者 Fuli Tian Jiaxin Li Yanqiu Lei Heng Zhang Lifeng Han Zhihua Guo Yonghui Gao Fenrong Liu Yan Wang Luhui Wang Shanghong Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期521-531,I0012,共12页
Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,w... Silver-copper electrocatalysts have demonstrated effectively catalytic performance in electroreduction CO_(2) toward CH_(4),yet a revealing insight into the reaction pathway and mechanism has remained elusive.Herein,we construct chemically bonded Ag-Cu_(2)O boundaries,in which the complete reduction of Cu_(2)O to Cu has been strongly impeded owing to the presence of surface Ag shell.The interfacial confinement effect helps to maintain Cu^(+)sites at the Ag-Cu_(2)O boundaries.Using in situ/operando spectroscopy and theoretical simulations,it is revealed that CO_(2) is enriched at the Ag-Cu_(2)O boundaries due to the enhanced physisorption and chemisorption to CO_(2),activating CO_(2) to form the stable intermediate^(*)CO.The boundaries between Ag shell and the Cu_(2)O mediate local^(*)CO coverage and promote^(*)CHO intermediate formation,consequently facilitating CO_(2)-to-CH_(4) conversion.This work not only reveals the structure-activity relationships but also offers insights into the reaction mechanism on Ag-Cu catalysts for efficient electrocatalytic CO_(2) reduction. 展开更多
关键词 Ag shell Interfacial confinement effect Cu~+ Local*CO coverage CO_(2)reduction
下载PDF
Ultimate flexural strength of normal section of FRP-confined RC circular columns 被引量:2
17
作者 顾冬生 吴刚 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期107-111,共5页
Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo... Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code. 展开更多
关键词 reinforced concrete(RC)circular columns flexural capacity of normal section fiber-reinforced polymer (FRP) CONFINEMENT
下载PDF
Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
18
作者 徐玲 姜磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期309-322,共14页
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically... This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases. 展开更多
关键词 asymmetric coupled confined space SYNCHRONIZATION stochastic resonance stability
原文传递
Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method
19
作者 JIANG Bei WANG Ming-zi +4 位作者 WANG Qi XIN Zhong-xin XING Xue-yang DENG Yu-song YAO Liang-di 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2467-2487,共21页
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ... Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China. 展开更多
关键词 automatically roadway with non-pillar confined lightweight concrete roof and rib support mechanical model bearing behaviour
下载PDF
Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma
20
作者 魏智强 刘立刚 +2 位作者 杨华 张材荣 冯旺军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2026-2030,共5页
Carbon encapsulated Fe nanoparticles were successfully prepared via confined arc plasma method. The composition, morphology, microstructure, specific surface area and particle size of the product were characterized vi... Carbon encapsulated Fe nanoparticles were successfully prepared via confined arc plasma method. The composition, morphology, microstructure, specific surface area and particle size of the product were characterized via X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectrometry and Brunauer-Emmett-Teller N2 adsorption. The experiment results show that the carbon encapsulated Fe nanoparticles have clear core-shell structure. The core of the particles is body centered cubic Fe, and the shell is disorder carbons. The particles are in spherical or ellipsoidal shapes. The particle size of the nanocapsules ranges from 15 to 40 nm, with the average value of about 30 nm. The particle diameter of the core is 18 nm, the thickness of the shells is 6-8 nm, and the specific surface area is 24 m2/g. 展开更多
关键词 carbon encapsulation Fe nanoparticles confined arc plasma
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部