Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under V...Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.展开更多
Lane-changing is performed either to follow the route to a planned destination(i.e.,mandatory lane-changing)or to achieve better driving conditions(i.e.,discretionary lane-changing).A connected environment is expected...Lane-changing is performed either to follow the route to a planned destination(i.e.,mandatory lane-changing)or to achieve better driving conditions(i.e.,discretionary lane-changing).A connected environment is expected to assist during lane-changing manoeuvres,but it is not known well how driving aids in a connected environment assist lane-changing execution.As such,this study investigates the impact of a connected environment on lanechanging execution time during mandatory and discretionary lane-changing manoeuvres.To this end,this study designed an advanced driving simulator experiment where 78 drivers performed these manoeuvres on a simulated motorway in three randomised driving conditions.The conditions were baseline(without driving aids),a fully functioning connected environment with a perfect supply of driving aids,and an impaired connected environment with delayed driving aids.The lane-changing execution time has been modelled by a random parameters hazard-based duration modelling approach,which accounts for the panel nature of data and captures the unobserved heterogeneity.Results suggest that,compared to the baseline condition(i.e.,a non-connected environment),most of the drivers in the connected environment take more time to complete their lane-changing manoeuvres,indicating drivers’safer lane-changing execution behaviour in the connected environment.The communication delay driving condition has been found to have more deteriorating effects on mandatory lanechanging manoeuvres than discretionary lane-changing manoeuvres.This study concludes that(i)the connected environment increases safety margin during both lane-changing manoeuvres,and(ii)a higher magnitude of safety margin is observed during mandatory lane-changing manoeuvres whereby drivers have a higher need for assistance.展开更多
In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodyna...In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.展开更多
The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber...The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber physical system(CPS) presents a new approach for the distributed hierarchical engineering system,with micro-grids included.The object of this paper is to integrate the CPS concept with MAS technology and propose a new control framework for micro-grids.With the analysis of the operating mode and control method of micro-grids,the cyber physical control concepts of ontologybased semantic agent are discussed.Then an MAS-based architecture of cyber physical micro-grid system and an intelligent electronic device(IED) function structure are proposed.Finally,in order to operate and test the cyber physical micro-grid concept,an integrated simulation model is presented.展开更多
Driving behavior is one of the main reasons that causes bottleneck on the freeway or restricts the capacity of signalized intersections.This paper proposes a car-following scheme in a model predictive control(MPC)fram...Driving behavior is one of the main reasons that causes bottleneck on the freeway or restricts the capacity of signalized intersections.This paper proposes a car-following scheme in a model predictive control(MPC)framework to improve the traffic flow behavior,particularly in stopping and speeding up of individual vehicles in dense urban traffic under a connected vehicle(CV)environment.Using information received through vehicle-to-vehicle(V2V)communication,the scheme predicts the future states of the preceding vehicle and computes the control input by solving a constrained optimization problem considering a finite future horizon.The objective function is to minimize the weighted costs due to speed deviation,control input,and unsafe gaps.The scheme shares the planned driving information with the following vehicles so that they can make better cooperative driving decision.The proposed car-following scheme is simulated in a typical driving scenario with multiple vehicles in dense traffic that has to stop at red signals in multiple intersections.The speeding up or queue clearing and stopping characteristics of the traffic using the proposed scheme is compared with the existing car-following scheme through numerical simulation.展开更多
基金sponsored by the Zhejiang Province Science and Technology Major Project of China(No.2021C01011)the National Natural Science Foundation of China(NSFC)(No.52172349)the China Scholarship Council(CSC).
文摘Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.
基金partly funded by the Australian Research Council grant DP210102970.
文摘Lane-changing is performed either to follow the route to a planned destination(i.e.,mandatory lane-changing)or to achieve better driving conditions(i.e.,discretionary lane-changing).A connected environment is expected to assist during lane-changing manoeuvres,but it is not known well how driving aids in a connected environment assist lane-changing execution.As such,this study investigates the impact of a connected environment on lanechanging execution time during mandatory and discretionary lane-changing manoeuvres.To this end,this study designed an advanced driving simulator experiment where 78 drivers performed these manoeuvres on a simulated motorway in three randomised driving conditions.The conditions were baseline(without driving aids),a fully functioning connected environment with a perfect supply of driving aids,and an impaired connected environment with delayed driving aids.The lane-changing execution time has been modelled by a random parameters hazard-based duration modelling approach,which accounts for the panel nature of data and captures the unobserved heterogeneity.Results suggest that,compared to the baseline condition(i.e.,a non-connected environment),most of the drivers in the connected environment take more time to complete their lane-changing manoeuvres,indicating drivers’safer lane-changing execution behaviour in the connected environment.The communication delay driving condition has been found to have more deteriorating effects on mandatory lanechanging manoeuvres than discretionary lane-changing manoeuvres.This study concludes that(i)the connected environment increases safety margin during both lane-changing manoeuvres,and(ii)a higher magnitude of safety margin is observed during mandatory lane-changing manoeuvres whereby drivers have a higher need for assistance.
基金Kampachi Farms LLC for their support to complete this work and for all the technical information provided to complete the numerical model
文摘In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.
基金National Natural Science Foundation of China(No.51477097)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,China(No.LAPS13009)National High-Technology Research and Development Program of China(863 Program)(No.2013BAA01B04)
文摘The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber physical system(CPS) presents a new approach for the distributed hierarchical engineering system,with micro-grids included.The object of this paper is to integrate the CPS concept with MAS technology and propose a new control framework for micro-grids.With the analysis of the operating mode and control method of micro-grids,the cyber physical control concepts of ontologybased semantic agent are discussed.Then an MAS-based architecture of cyber physical micro-grid system and an intelligent electronic device(IED) function structure are proposed.Finally,in order to operate and test the cyber physical micro-grid concept,an integrated simulation model is presented.
文摘Driving behavior is one of the main reasons that causes bottleneck on the freeway or restricts the capacity of signalized intersections.This paper proposes a car-following scheme in a model predictive control(MPC)framework to improve the traffic flow behavior,particularly in stopping and speeding up of individual vehicles in dense urban traffic under a connected vehicle(CV)environment.Using information received through vehicle-to-vehicle(V2V)communication,the scheme predicts the future states of the preceding vehicle and computes the control input by solving a constrained optimization problem considering a finite future horizon.The objective function is to minimize the weighted costs due to speed deviation,control input,and unsafe gaps.The scheme shares the planned driving information with the following vehicles so that they can make better cooperative driving decision.The proposed car-following scheme is simulated in a typical driving scenario with multiple vehicles in dense traffic that has to stop at red signals in multiple intersections.The speeding up or queue clearing and stopping characteristics of the traffic using the proposed scheme is compared with the existing car-following scheme through numerical simulation.