期刊文献+
共找到101,459篇文章
< 1 2 250 >
每页显示 20 50 100
Improved contact angle measurement in multiphase lattice Boltzmann
1
作者 钟兴国 刘阳莎 +2 位作者 姚怡辰 何冰 闻炳海 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期537-543,共7页
Contact angle is an essential parameter to characterize substrate wettability.The measurement of contact angle in experiment and simulation is a complex and time-consuming task.In this paper,an improved method of meas... Contact angle is an essential parameter to characterize substrate wettability.The measurement of contact angle in experiment and simulation is a complex and time-consuming task.In this paper,an improved method of measuring contact angle in multiphase lattice Boltzmann simulations is proposed,which can accurately obtain the real-time contact angle at a low temperature and larger density ratio.The three-phase contact point is determined by an extrapolation,and its position is not affected by the local deformation of flow field in the three-phase contact region.A series of simulations confirms that the present method has high accuracy and gird-independence.The contact angle keeps an excellent linear relationship with the chemical potential of the surface,so that it is very convenient to specify the wettability of a surface.The real-time contact angle measurement enables us to obtain the dynamic contact angle hysteresis on chemically heterogeneous surface,while the mechanical analyses can be effectively implemented at the moving contact line. 展开更多
关键词 contact angle measurement contact angle hysteresis mechanical analysis lattice Boltzmann method
原文传递
Contact Angle Prediction Model for Underwater Oleophobic Surfaces Based on Multifractal Theory
2
作者 Jiang Huayi You Yanzhen +4 位作者 Hu Juan Tian Dongmei Qi Hongyuan Sun Nana Liu Mei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期37-48,共12页
Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and ... Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and underwateroleophobic surfaces based on polyvinylidene fluoride (PVDF) using a chemical modification method, and the fractaldimension and multifractal spectrum are used to quantitatively characterize the microscopic morphology. A new contactangle prediction model for underwater oleophobic surfaces is established. The results show that the fractal dimension ofthe PVDF surface first increases and then decreases with the reaction time. The uniformity characterized by the multifractalspectrum was generally consistent with scanning electron microscope observations. The contact angle of water droplets onthe PVDF surface is negatively correlated with the fractal dimension, and oil droplets in water are positively correlated.When the fractal dimension is 2.0975, the new contact angle prediction model has higher prediction accuracy. Themaximum and minimum relative deviations of the contact angle between the theoretical and measured data are 18.20%and 0.72%, respectively. For water ring transportation, the larger the fractal dimension and spectral width of the materialsurface, the smaller the absolute value of the spectral difference, the stronger the hydrophilic and oleophobic properties, andthe better the water ring transportation stability. 展开更多
关键词 contact angle hydrophilic-oleophobic surface polyvinylidene fluoride MULTIFRACTAL prediction model
下载PDF
Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting
3
作者 Dongmin Wang Gaoshuai Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期299-318,共20页
There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch... There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting. 展开更多
关键词 Pseudopotential lattice Boltzmann model contact angle scheme static wetting dynamic wetting capillary imbibition
下载PDF
Automatic measurement of three-phase contact angles in pore throats based on digital images
4
作者 ZANG Chuanzhen WANG Lida +3 位作者 ZHOU Kaihu YU Fuwei JIANG Hanqiao LI Junjian 《Petroleum Exploration and Development》 SCIE 2023年第2期442-449,共8页
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood... With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil. 展开更多
关键词 microfluidic model water flooding experiment digital image processing three-phase contact angle measure-ment method flow regime of the remaining oil
下载PDF
Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle 被引量:2
5
作者 Hongxin Zhang Lusheng Zhai +2 位作者 Ruoyu Liu Cong Yan Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期698-711,共14页
In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow... In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP. 展开更多
关键词 Oil–water two-phase flow Curved interface Conductance parallel-wire array probes Dynamic contact angle
下载PDF
EFFECT OF CONTACT ANGLE HYSTERESIS ON DROPLET BEHAVIORS:TWO-PHASE LATTICE BOLTZMANN SIMULATION 被引量:1
6
作者 汪磊 许常悦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第3期270-275,共6页
An approach of dealing with contact angle hysteresis in lattice Boltzmann method is introduced in detail.The approach is also used to investigate droplet behaviors on surfaces of chemical inhomogeneities or roughness(... An approach of dealing with contact angle hysteresis in lattice Boltzmann method is introduced in detail.The approach is also used to investigate droplet behaviors on surfaces of chemical inhomogeneities or roughness(non-ideal surfaces).Droplet slipping on surfaces under gravity or in shear flows,and droplet impacting on surfaces are numerically simulated.It is found that the present approach is suitable to model droplet motions on non-ideal surfaces and the contact angle hysteresis has an obvious effect on the motion of droplets. 展开更多
关键词 lattice Boltzmann MULTIPHASE contact angle hysteresis droplet behaviors
下载PDF
Water contact angles on charged surfaces in aerosols
7
作者 申钰田 林挺 +3 位作者 杨镇泽 黄永峰 徐纪玉 孟胜 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期569-574,共6页
Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface char... Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments. 展开更多
关键词 water contact angle charged surface AEROSOLS
原文传递
Modeling Superhydrophobic Contact Angles and Wetting Transition 被引量:9
8
作者 Nan Gao, Yuying YanDBE, Faculty of Engineering, University of Nottingham, NGl 2RD, UK 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期335-340,共6页
It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxtermodels,which correspond to the homogeneous and heterogeneous wetting respectively,are currently pr... It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxtermodels,which correspond to the homogeneous and heterogeneous wetting respectively,are currently primary instructions fordesigning superhydrophobic surfaces.However,the particular drop shape that a drop exhibits might depend on how it is formed.A water drop can occupy multiple equilibrium states,which relate to different local minimal energy.In some cases,both equilibriumstates can even co-exist on a same substrate.Thus the apparent contact angles may vary and have different values.Wediscuss how the Wenzel and Cassie-Baxter equations determine the homogeneous and heterogeneous wetting theoretically.Contact angle analysis on hierarchical surface structure and contact angle hysteresis has been put specific attention.In particular,we study the energy barrier of transition from Cassie-Baxter state to Wenzel state,based on existing achievement by previousresearchers,to determine the possibility of the transition and how it can be interpreted.It has been demonstrated that surfaceroughness and geometry will influence the energy required for a drop to get into equilibrium,no matter it is homogeneous orheterogeneous wetting. 展开更多
关键词 SUPERHYDROPHOBIC surface contact angle WETTING TRANSITION energy BALANCE biomimetics
下载PDF
Effects of hysteresis of static contact angle (HSCA) and boundary slip on the hydrodynamics of water striders 被引量:1
9
作者 J. Zheng B. S. Wang +4 位作者 W. Q. Chen X. Y. Han C. F. Li J. Z. Zhang K. P. Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期40-61,共22页
It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle(HSCA), and contact angles keep changing as contact lines relatively s... It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle(HSCA), and contact angles keep changing as contact lines relatively slide on the solid.Here, the effects of HSCA and boundary slip were first distinguished on the micro-curvature force(MCF) on the seta.Hence, the total MCF is partitioned into static and dynamic MCFs correspondingly. The static MCF was found proportional to the HSCA and related with the asymmetry of the micro-meniscus near the seta. The dynamic MCF, exerting on the relatively sliding contact line, is aroused by the boundary slip. Based on the Blake–Haynes mechanism, the dynamic MCF was proved important for water walking insects with legs slower than the minimum wave speed 23 cm · s-1. As insects brush the water by laterally swinging legs backwards,setae on the front side of the leg are pulled and the ones on the back side are pushed to cooperatively propel bodies forward.If they pierce the water surface by vertically swinging legs downwards, setae on the upside of the legs are pulled, and the ones on the downside are pushed to cooperatively obtain a jumping force. Based on the dependency between the slip length and shear rate, the dynamic MCF was found correlated with the leg speed U, as F^C_1 U + C_2U^(2+ε), where C_1 and C_2 are determined by the dimple depth. Discrete points on this curve could give fitted relations as F^U~b(Suter et al., J. Exp. Biol. 200, 2523–2538, 1997). Finally,the axial torque on the inclined and partially submerged seta was found determined by the surface tension, contact angle,HSCA, seta width, and tilt angle. The torque direction coincides with the orientation of the spiral grooves of the seta,which encourages us to surmise it is a mechanical incentive for the formation of the spiral morphology of the setae of water striders. 展开更多
关键词 SETA Water strider HYSTERESIS of STATIC contact angle (HSCA) BOUNDARY SLIP
下载PDF
Comparative study of two lattice Boltzmann multiphase models for simulating wetting phenomena: implementing static contact angles based on the geometric formulation 被引量:1
10
作者 Feng YE Qinfeng DI +3 位作者 Wenchang WANG Feng CHEN Huijuan CHEN Shuai HUA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第4期513-528,共16页
Wetting phenomena are widespread in nature and industrial applications. In general, systems concerning wetting phenomena are typical multicomponent/multiphase complex fluid systems. Simulating the behavior of such sys... Wetting phenomena are widespread in nature and industrial applications. In general, systems concerning wetting phenomena are typical multicomponent/multiphase complex fluid systems. Simulating the behavior of such systems is important to both scientific research and practical applications. It is challenging due to the complexity of the phenomena and difficulties in choosing an appropriate numerical method. To provide some detailed guidelines for selecting a suitable multiphase lattice Boltzmann model, two kinds of lattice Boltzmann multiphase models, the modified S-C model and the H-C-Z model, are used in this paper to investigate the static contact angle on solid surfaces with different wettability combined with the geometric formulation(Ding, H. and Spelt, P.D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708(2007)). The specific characteristics and computational performance of these two lattice Boltzmann method(LBM) multiphase models are analyzed including relationship between surface tension and the control parameters, the achievable range of the static contact angle, the maximum magnitude of the spurious currents(MMSC), and most importantly, the convergence rate of the two models on simulating the static contact angle. The results show that a wide range of static contact angles from wetting to non-wetting can be realized for both models. MMSC mainly depends on the surface tension. With the numerical parameters used in this work, the maximum magnitudes of the spurious currents of the two models are on the same order of magnitude. MMSC of the S-C model is universally larger than that of the H-C-Z model. The convergence rate of the S-C model is much faster than that of the H-C-Z model. The major foci in this work are the frequently-omitted important details in simulating wetting phenomena. Thus, the major findings in this work can provide suggestions for simulating wetting phenomena with LBM multiphase models along with the geometric formulation. 展开更多
关键词 lattice BOLTZMANN method(LBM) WETTING phenomenon static contact angle
下载PDF
Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis 被引量:1
11
作者 Yanyao Bao Ling Li +2 位作者 Luming Shen Chengwang Lei Yixiang Gan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期472-485,共14页
Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SP... Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid-solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations;the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions. 展开更多
关键词 Smoothed PARTICLE HYDRODYNAMICS contact angle dynamics CAPILLARY number INTERFACIAL VISCOUS force
下载PDF
Mechanism of contact angle saturation and an energy-based model for electrowetting 被引量:3
12
作者 赵瑞 梁忠诚 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期360-365,共6页
Electrowetting,as a well-known approach to increasing droplet wettability on a solid surface by electrical bias,has broad applications.However,it is limited by contact angle saturation at large voltage.Although severa... Electrowetting,as a well-known approach to increasing droplet wettability on a solid surface by electrical bias,has broad applications.However,it is limited by contact angle saturation at large voltage.Although several debated hypotheses have been proposed to describe it,the physical origin of contact angle saturation still remains obscure.In this work,the physical factors responsible for the onset of contact angle saturation are explored,and the correlated theoretical models are established to characterize electrowetting behavior.Combination of the proper 3-phase system employed succeeds in dropping the saturating contact angle below 25?,and validates that the contact angle saturation is not a result of devicerelated imperfection. 展开更多
关键词 润湿接触角 饱和度 模型 机制 基础 能源 物理因素 固体表面
原文传递
Contact Angle Hysteresis and Hysteresis Tension on Rough Solid Surface 被引量:7
13
作者 王晓东 彭晓峰 王补宣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期615-621,共7页
Observation and measurement were conducted to investigate contact angle and its hysteresis on rough surface. The experimental results indicate that the increase in solid surface roughness enlarges advancing contact an... Observation and measurement were conducted to investigate contact angle and its hysteresis on rough surface. The experimental results indicate that the increase in solid surface roughness enlarges advancing contact angle and decreases receding contact angle, resulting in enhanced hysteresis. It was observed that when Young's contact angle θy < 90°, as the roughness of solid surface increased the extent of the decrease in receding contact angle exceeded that of the increase in advancing contact angle. Based on the experimental observations, the concept of hysteresis tension was introduced to describe the contact angle hysteresis behavior on rough solid surface. The model provides a thoughtful understanding of the physical nature of contact angle hysteresis, in particular an instructive description of the influence of surface roughness on the hysteresis. The prediction of the model is found in quite good agreement with the experimental observation and measurement. 展开更多
关键词 接触角滞后现象 滞后张力 粗糙表面 液-汽相转换 热传递过程
下载PDF
Machine Vision Based Measurement of Dynamic Contact Angles in Microchannel Flows 被引量:5
14
作者 Valtteri Heiskanen Kalle Marjanen Pasi Kallio 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第4期282-290,共9页
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of mate... When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB? environment. Im- ages are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles. 展开更多
关键词 数字图像处理 机器视觉 微观射流技术 图像测量 微通道
下载PDF
Contact angle hysteresis in electrowetting on dielectric
15
作者 赵瑞 刘启超 +1 位作者 王评 梁忠诚 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期492-496,共5页
Contact angle hysteresis(CAH) is one of the significant physical phenomena in electrowetting on dielectric(EWOD).In this work, a theoretical model is proposed to characterize electrowetting evolution on substrates wit... Contact angle hysteresis(CAH) is one of the significant physical phenomena in electrowetting on dielectric(EWOD).In this work, a theoretical model is proposed to characterize electrowetting evolution on substrates with CAH, and the relationship among apparent contact angle, potential, and some other parameters is quantified. And this theory is also validated experimentally. The results indicate that our theory and equation based on energy balance succeed in describing the electrowetting response of potential with significant contact angle hysteresis. The CAH in EWOD, ranging from 0° to about 20° in electrowetting cycle, increases with the increase of voltage and climbs up to about 20° when voltage is increased to about 38 V, and then decreases to zero with the further increase of voltage. 展开更多
关键词 contact angle HYSTERESIS ELECTROWETTING energy BALANCE
原文传递
Application of the Zisman Critical Surface Tension Technique to Textile Materials Using Contact Angle Measurements
16
作者 江红 迟克栋 吴慧莉 《Journal of Donghua University(English Edition)》 EI CAS 2001年第1期38-45,共8页
This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused b... This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused by the porous structure of the fabric will be taken into account. To do so, a Jens equation is applied, and the measured contact angles can be corrected. The surface porosity was determined by measurement and approximate calculation, and the chemical composition of the surface was characterized by means of attenuated total reflection Fourier-transform infrared(FTIR/ATR). 展开更多
关键词 SURFACE tension contact angle SURFACE porosity textile materials.
下载PDF
The Wetting Behavior of Fresh and Aged Soot Studied through Contact Angle Measurements
17
作者 Yiyi Wei Qing Zhang Jonathan E. Thompson 《Atmospheric and Climate Sciences》 2017年第1期11-22,共12页
In this work, contact angle measurements for soot samples collected from a kerosene lantern, wood-burning fireplace, and municipal bus engine exhaust lines are reported. Contact angles for both freshly collected soot ... In this work, contact angle measurements for soot samples collected from a kerosene lantern, wood-burning fireplace, and municipal bus engine exhaust lines are reported. Contact angles for both freshly collected soot and samples treated with various doses of O3 (g), HNO3 (g), and H2SO4 (g) are considered. Use of a literature method has allowed estimation of the enthalpy of immersion (Himm) for the soot samples based on contact angle observed. Contact angles for freshly collected soot were 65 - 110 deg. indicating its hydrophobic nature. Chemical processing of soot usually resulted in smaller contact angles and large increases in immersion enthalpy. However, the dose of ozone, nitric or sulfuric acid vapor required to achieve alteration of the soot surface appeared to be considerably larger than that expected to be experienced by authentic atmospheric samples during the soot particles lifetime. The most significant variability of soot contact angle was observed for the municipal bus exhaust samples, suggesting that combustion chemistry may significantly affect wetting behavior. 展开更多
关键词 SOOT Black Carbon WETTING ENTHALPY of IMMERSION contact angle Graphene Oxide
下载PDF
A new model for the formation of contact angle and contact angle hysteresis
18
作者 公茂刚 刘远越 许小亮 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期390-395,共6页
The formation mechanism of the contact angle and the sliding angle for a liquid drop on a solid surface plays an important role in producing hydrophobic surfaces. A new half soakage model is established in this paper ... The formation mechanism of the contact angle and the sliding angle for a liquid drop on a solid surface plays an important role in producing hydrophobic surfaces. A new half soakage model is established in this paper as a substitute for Wenzel (complete soakage) and Cassie (no soakage) models. The model is suited to many solid surfaces, whether they are hydrophilic or hydrophobic, or even superhydrophobic. Based on the half soakage model, we analyse two surfaces resembling lotus, i.e. taper-like surface and corona-like surface. Furthermore, this new model is used to establish a quantitative relationship between the sliding angle and the parameters of surface morphology. 展开更多
关键词 接触角滞后 模型 疏水表面 固体表面 液滴运动 大肠杆菌 定量关系 表面形貌
原文传递
Determination of Contact Angle Hysteresis on Polyamide Surfaces
19
作者 Marcela Bachurova Jakub Wiener 《Journal of Chemistry and Chemical Engineering》 2012年第1期27-30,共4页
关键词 接触角滞后 固体表面 聚酰胺 测定 接触角测量 润湿性 表面润湿 粗糙度
下载PDF
Non-contact angle measurement based on parallel multiplex laser feedback interferometry 被引量:3
20
作者 张松 谈宜东 张书练 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期320-324,共5页
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry(PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle var... We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry(PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of noncooperative targets. Experimental results show that PLFI has an accuracy of 8 within a range of 1400. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent5529 A. 展开更多
关键词 双频激光干涉仪 接触角测量 激光反馈 多路 并行 超高灵敏度 非接触测量 测量方案
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部