This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the...This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds.展开更多
The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this probl...The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.展开更多
Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a rev...Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a review of selected water contaminants and their impacts on human health.The World Health Organization(WHO)guidelines and regional standards for key contaminants were used to characterise water quality in the European Union and UK.The concept of safe drinking water was explained based on the non-observed adverse effect level,threshold concentrations for toxic chemicals,and their total daily intake.Various techniques for monitoring water contaminants and the drinking water standards from five different countries,including the UK,USA,Canada,Pakistan and India,were compared to WHO recommended guidelines.The literature on actual water quality in these regions and its potential health impacts was also discussed.Finally,the role of public water suppliers in identifying and monitoring drinking water contaminants in selected developed countries was presented as a potential guideline for developing countries.This review emphasised the need for a comprehensive understanding of water quality and its impacts on human health to ensure access to clean drinking water worldwide.展开更多
The US Commonwealth of Puerto Rico is comprised of 143 islands, atolls, cays, and islets. Of the 143 localities, only 3 islands are inhabited: The mainland (often referenced as Puerto Rico), Culebra, and Vieques. To p...The US Commonwealth of Puerto Rico is comprised of 143 islands, atolls, cays, and islets. Of the 143 localities, only 3 islands are inhabited: The mainland (often referenced as Puerto Rico), Culebra, and Vieques. To properly analyze the water supply quality, the mainland will be the focal point for examining environmental and social injustices. Puerto Rico is a racially diverse but ethnically homogenous territory, with most of the commonwealth living below the poverty level. Access to clean water sources is always tenuous in Puerto Rico. Over 70 percent of the island is served by water, violating US health standards. However, the recent hurricanes made the situation even more detrimental. According to data reported between January 2015 and March 2018 by the Consumer Confidence Report (CCR), 97 percent of the population of Puerto Rico utilizes a common drinking water system with one or more recent violations of the Safe Drinking Water Act for its testing requirements for lead and copper levels. The amounts found were far higher than any US state, meaning that virtually everyone on the island gets water from systems that violated testing or reporting requirements. In this study, we have collected and analyzed the levels of trihalomethanes (THMs), haloacetic acids (HAAs), copper, lead, and total organic compounds (TOCs) in drinking water providing systems in Puerto Rico and compared them with the recommended levels of contaminants provided by the US Environmental Protection Agency (EPA) guidelines. Many of these reported contaminants can have serious and detrimental health effects after prolonged exposure to higher concentrations of the contaminants found in the drinking water sources of Puerto Rico.展开更多
Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracyclin...Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.展开更多
文摘This paper is intended to explore soil organic matter and carbon isotope fractionation at three locations of the Passaic River to determine if microbial degradation of organic contaminants in soil is correlated to the surrounding physical environment. Microbial degradation of organic contaminants is important for the detoxification of toxic substances thereby minimizing stagnation in the environment and accumulating in the food chain. Since organic contaminants are not easily dissolved in water, they will penetrate sediment and end up enriching the adjacent soil. The hypothesis that we are testing is microbial activity and carbon isotope fractionation will be greater in preserved soils than urban soils. The reason why this is expected to be the case is the expectation of higher microbial activity in preserved environments due to less exposure to pollutants, better soil structure, higher organic matter content, and more favorable conditions for microbial growth. This is contrasted with urban soils, which are impacted by pollutants and disturbances, potentially inhibiting microbial activity. We wish to collect soil samples adjacent to the Passaic River at a pristine location, Great Swamp Wildlife Refuge, a suburban location, Goffle Brook Park, Hawthorne NJ, and an urban location, Paterson NJ. These soil samples will be weighed for soil organic matter (SOM) and weighed for isotope ratio mass spectrometry (IRMS) to test organic carbon isotopes. High SOM and δ13C depletion activity indicate microbial growth based on the characteristics of the soil horizon rather than the location of the soil sample which results in degradation of organic compounds.
基金supported by the National Natural Science Foundation of China(No.21906056No.22176060)+2 种基金the Undergraduate Training Program on Innovation and Entrepreneurship(S202110251087)the Science and Technology Commission of Shanghai Municipality(22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400).
文摘The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.
文摘Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a review of selected water contaminants and their impacts on human health.The World Health Organization(WHO)guidelines and regional standards for key contaminants were used to characterise water quality in the European Union and UK.The concept of safe drinking water was explained based on the non-observed adverse effect level,threshold concentrations for toxic chemicals,and their total daily intake.Various techniques for monitoring water contaminants and the drinking water standards from five different countries,including the UK,USA,Canada,Pakistan and India,were compared to WHO recommended guidelines.The literature on actual water quality in these regions and its potential health impacts was also discussed.Finally,the role of public water suppliers in identifying and monitoring drinking water contaminants in selected developed countries was presented as a potential guideline for developing countries.This review emphasised the need for a comprehensive understanding of water quality and its impacts on human health to ensure access to clean drinking water worldwide.
文摘The US Commonwealth of Puerto Rico is comprised of 143 islands, atolls, cays, and islets. Of the 143 localities, only 3 islands are inhabited: The mainland (often referenced as Puerto Rico), Culebra, and Vieques. To properly analyze the water supply quality, the mainland will be the focal point for examining environmental and social injustices. Puerto Rico is a racially diverse but ethnically homogenous territory, with most of the commonwealth living below the poverty level. Access to clean water sources is always tenuous in Puerto Rico. Over 70 percent of the island is served by water, violating US health standards. However, the recent hurricanes made the situation even more detrimental. According to data reported between January 2015 and March 2018 by the Consumer Confidence Report (CCR), 97 percent of the population of Puerto Rico utilizes a common drinking water system with one or more recent violations of the Safe Drinking Water Act for its testing requirements for lead and copper levels. The amounts found were far higher than any US state, meaning that virtually everyone on the island gets water from systems that violated testing or reporting requirements. In this study, we have collected and analyzed the levels of trihalomethanes (THMs), haloacetic acids (HAAs), copper, lead, and total organic compounds (TOCs) in drinking water providing systems in Puerto Rico and compared them with the recommended levels of contaminants provided by the US Environmental Protection Agency (EPA) guidelines. Many of these reported contaminants can have serious and detrimental health effects after prolonged exposure to higher concentrations of the contaminants found in the drinking water sources of Puerto Rico.
基金supported by the Key R&D Plan of Anhui Province(No.201904a07020013)Collaborative Innovation Program of Hefei Science Center,CAS(No.CX2140000018)the Funding for Joint Lab of Applied Plasma Technology(No.JL06120001H)。
文摘Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.