期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural Characteristics and Formation Dynamics: A Review of the Main Sedimentary Basins in the Continent of China 被引量:2
1
作者 HE Bizhu ZHENG Menglin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1156-1194,共39页
The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data an... The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China. 展开更多
关键词 sedimentary basin structural architecture superimposed evolution interaction dynamics of basin and orogeny continent of china
下载PDF
Some geologic signatures of fault creep in the continental area of China
2
作者 向宏发 虢顺民 +1 位作者 张晚霞 张秉良 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第1期112-119,共8页
Various geologic signatures of fault creep along most of the active faults in the continental area of China can be recognized, although no surface deformation caused by creep slip event has been observed. These ... Various geologic signatures of fault creep along most of the active faults in the continental area of China can be recognized, although no surface deformation caused by creep slip event has been observed. These signatures include ordered regional taphrogeny, linear deformation zones distributed along the fault, and seismic slip rate much lower than the geologic slip rate, etc. The recognition and identification of this important fault behavior are of great theoretical and practical significance. 展开更多
关键词 fault creep continental area of china geologic signatures
下载PDF
Tectonic Related Lithium Deposits Another Major Region Found North East Tanzania—A New Area with Close Association to the Dominant Areas: The Fourth of Four 被引量:1
3
作者 Lawrence Stephenson 《Natural Resources》 2023年第9期161-191,共31页
The current “mega” interest in Lithium resources was spurred by the development of Lithium-Ion batteries to aid in restructuring the world’s reliance on carbon spewing power petroleum reserves. Current resources of... The current “mega” interest in Lithium resources was spurred by the development of Lithium-Ion batteries to aid in restructuring the world’s reliance on carbon spewing power petroleum reserves. Current resources of lithium recovery have fallen into two main categories—Pegmatite, found worldwide associated with felsic intrusions and Brine Related, and now with development in the Southwest United States of America (SWUS), a third category— Tertiary Volcanic clays, are specifically associated with Tertiary volcanics and major Tectonic Plate interactions. “Active” Plate tectonics is important as both the SWUS, the Lithium Triangle of South America (LTSA) and the Tibetan Plateau of China (TPC) producing tertiary (Miocene) volcanism that is important to the development of Lithium resources. The Tanzanian part of the East Africa Rift System (EARS) has features of both the SWUS, tertiary volcanic related “playas” and Continental rifting, the LTSA, tertiary volcanic related “Brines” and a major Tectonic plate event (subduction of an Oceanic Plate beneath the Continental South American Plate) and the TPC, tertiary volcanics (?) and major tectonic plate event (subduction of the Indian Continental Plate under the Eurasian Continental Plate). As well as the association of peralkaline and metaluminous felsic volcanics with Lithium playas of the SWUS and the EARS (Tanzania) “playas”. These similarities led to an analysis of a volcanic rock in Northeast Tanzania. When it returned 1.76% Lithium, a one-kilometer spaced soil sampling program returned, in consecutive samples over 0.20% Lithium (several samples over 1.0% lithium and a high of 2.24% lithium). It is proposed that these four regions with very similar past and present geologic characteristics, occur nowhere else in the world. That three of them have produced Lithium operations and two of them have identified resources of Lithium clay and “highly” anomalous Lithium clays should be regarded as more than “coincidental”. 展开更多
关键词 Lithium Triangle of South America Southwest United States Tibetan Plateau of china East Africa Rift System Tectonic continental Oceanic Plate Subduction Tertiary (Miocene - Holocene) Volcanics continental Rifting
下载PDF
Gravity variation before the Akto Ms6.7 earthquake, Xinjiang
4
作者 Hongtao Hao Lelin Xing +2 位作者 Minzhang Hu Yufei Han Hui Li 《Geodesy and Geodynamics》 2017年第2期136-140,共5页
The relationship between gravity variation and the Akto Ms6.7 earthquake on November 11, 2016, was studied by use of mobile gravity observation data from the China continental structural environmental monitoring netwo... The relationship between gravity variation and the Akto Ms6.7 earthquake on November 11, 2016, was studied by use of mobile gravity observation data from the China continental structural environmental monitoring network. The result revealed that before the Akto earthquake, a high positive gravity variation was observed in the Pamir tectonic knots region (within a maximum magnitude of approximately +80 microgal), which was consistent with the existing knowledge of gravity abnormality and the locations of strong earthquakes. In view of the recent strong seismic activities in the Pamir tectonic knots region, as well as the strong upward crust movement and compressive strain, it is believed that gravity change in the Pamir tectonic knots region reflects the recent strong seismic activities and crust movement. 展开更多
关键词 The continental tectonics environmental monitoring network of china Gravity variation Akto earthquake
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部