期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal state and branch sequence based parameter estimation of continuous hidden Markov model
1
作者 俞璐 吴乐南 谢钧 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期136-140,共5页
A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use... A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two. 展开更多
关键词 continuous hidden markov model optimal state and branch sequence MAXIMUMLIKELIHOOD CONVERGENCE viterbi algorithm
下载PDF
Subspace Distribution Clustering HMM for Chinese Digit Speech Recognition
2
作者 秦伟 韦岗 《Journal of Electronic Science and Technology of China》 2006年第1期43-46,共4页
As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribut... As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is described. Compared with the conventional training method, an SDCHMM recognizer trained by means of the new method achieves higher accuracy and speed. Experiment results show that the SDCHMM recognizer outperforms the CDHMM recognizer on speech recognition of Chinese digits. 展开更多
关键词 speech recognition Subspace Distribution Clustering hidden markov model(SDCHMM) continuous Density hidden markov model (CDHMM) parameter tying
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部