This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect ...Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination of CWA and PLSR was found to be promising in providing relatively accurate estimates of disease severity of powdery mildew on leaf level.展开更多
As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. ...As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.展开更多
Spectroscopy can be used for detecting crop characteristics. A goal of crop spectrum analysis is to extract effective features from spectral data for establishing a detection model. An ideal spectral feature set shoul...Spectroscopy can be used for detecting crop characteristics. A goal of crop spectrum analysis is to extract effective features from spectral data for establishing a detection model. An ideal spectral feature set should have high sensitivity to target parameters but low information redundancy among features.However, feature-selection methods that satisfy both requirements are lacking. To address this issue,in this study, a novel method, the continuous wavelet projections algorithm(CWPA), was developed,which has advantages of both continuous wavelet analysis(CWA) and the successive projections algorithm(SPA) for generating optimal spectral feature set for crop detection. Three datasets collected for crop stress detection and retrieval of biochemical properties were used to validate the CWPA under both classification and regression scenarios. The CWPA generated a feature set with fewer features yet achieving accuracy comparable to or even higher than those of CWA and SPA. With only two to three features identified by CWPA, an overall accuracy of 98% in classifying tea plant stresses was achieved, and high coefficients of determination were obtained in retrieving corn leaf chlorophyll content(R^(2)= 0.8521)and equivalent water thickness(R^(2)= 0.9508). The mechanism of the CWPA ensures that the novel algorithm discovers the most sensitive features while retaining complementarity among features. Its ability to reduce the data dimension suggests its potential for crop monitoring and phenotyping with hyperspectral data.展开更多
Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of ...Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT.展开更多
Continuous Morlet and Mexican hat wavelets are used to analyze a highly irregular rough surface replicated from real turbine blades which are roughened by deposi-tion of foreign materials. The globally dominant aspect...Continuous Morlet and Mexican hat wavelets are used to analyze a highly irregular rough surface replicated from real turbine blades which are roughened by deposi-tion of foreign materials. The globally dominant aspect ratio, length scale, and orientation of the roughness elements are determined. These parameters extracted from this highly irregular rough surface are important for the future studies of their effects on turbulent flows over this kind of rough surfaces encountered in Washington aerospace and power generating industries.展开更多
Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering ...Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering areas like audio de-noising, signal compression, object detection, image decomposition, speech recognition etc. Wavelet analysis employs orthonormal as well as non-orthonornal functions. This research investigates the effectiveness of wavelet analysis in detecting defects in underground steel pipe networks. Continuous Wavelet Transforms (CWT) has been performed on the received signals of cylindrical guided waves. Cylindrical Guided waves are generated and propagated through the pipe wall boundaries in a pitch-catch system. Piezo-electric transducers are used to generate as well as receive guided waves. Several mother wavelet functions such as Daubechies, Symlet, Coiflet and Meyer have been used for the Continuous Wavelet Transform to investigate the most suitable function for defect detection. This research also investigates the effect of surrounding soil on wavelet transforms for different mother wavelet functions.展开更多
In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem ...In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.展开更多
A new algorithm to compute continuous wavelet transforms at dyadic scales is proposed here. Our approach has a similar implementation with the standard algorithme a trous and can coincide with it in the one dimensiona...A new algorithm to compute continuous wavelet transforms at dyadic scales is proposed here. Our approach has a similar implementation with the standard algorithme a trous and can coincide with it in the one dimensional lower order spline case.Our algorithm can have arbitrary order of approximation and is applicable to the multidimensional case.We present this algorithm in a general case with emphasis on splines anti quast in terpolations.Numerical examples are included to justify our theorerical discussion.展开更多
The continuous wavelet transform(CWT)based method was improved for estimating the natural frequencies and damping ratios of a structural system in this paper.The appropriate scale of CWT was selected by means of the l...The continuous wavelet transform(CWT)based method was improved for estimating the natural frequencies and damping ratios of a structural system in this paper.The appropriate scale of CWT was selected by means of the least squares method to identify the systems with closely spaced modes.The important issues related to estimation accuracy such as mode separation and end effect,were also investigated.These issues were associated with the parameter selection of wavelet function based on the fitting error of least squares.The efficiency of the method was confirmed by applying it to a simulated 3dof damped system with two close modes.展开更多
Based on the Gauss linear frequency modulated wavelet transform, a new characteristic index is presented, namely time frequency energy attenuation factor which can reflect the difference features of waveform in earthq...Based on the Gauss linear frequency modulated wavelet transform, a new characteristic index is presented, namely time frequency energy attenuation factor which can reflect the difference features of waveform in earthquake focus mechanism, wave traveling path and its attenuation characteristics in focal area or near field. In order to test its validity, we select the natural earthquakes and explosion or collapse events whose focus mechanisms vary obviously,and some natural earthquakes located at the same site or in a very small area. The study indicates that the time frequency energy attenuation factors of the natural earthquakes are obviously different with that of explosion or collapse events, and the change of the time frequency energy attenuation factors is relatively stable for the earthquakes under the normal seismicity background. Using the above mentioned method, it is expected to offer a useful criterion for strong earthquake prediction by continuous earthquake observation.展开更多
It is necessary to quantitatively identify different diseases and nitrogen-water stress for the guidance in spraying specific fungicides and fertilizer applications.The winter wheat diseases,in combination with nitrog...It is necessary to quantitatively identify different diseases and nitrogen-water stress for the guidance in spraying specific fungicides and fertilizer applications.The winter wheat diseases,in combination with nitrogen-water stress,are therefore common causes of yield loss in winter wheat in China.Powdery mildew(Blumeria graminis)and stripe rust(Puccinia striiformis f.sp.Tritici)are two of the most prevalent winter wheat diseases in China.This study investigated the potential of continuous wavelet analysis to identify the powdery mildew,stripe rust and nitrogen-water stress using canopy hyperspectral data.The spectral normalization process was applied prior to the analysis.Independent t-tests were used to determine the sensitivity of the spectral bands and vegetation index.In order to reduce the number of wavelet regions,correlation analysis and the independent t-test were used in conjunction to select the features of greatest importance.Based on the selected spectral bands,vegetation indices and wavelet features,the discriminate models were established using Fisher’s linear discrimination analysis(FLDA)and support vector machine(SVM).The results indicated that wavelet features were superior to spectral bands and vegetation indices in classifying different stresses,with overall accuracies of 0.91,0.72,and 0.72 respectively for powdery mildew,stripe rust and nitrogen-water by using FLDA,and 0.79,0.67 and 0.65 respectively by using SVM.FLDA was more suitable for differentiating stresses in winter wheat,with respective accuracies of 78.1%,95.6%and 95.7%for powdery mildew,stripe rust,and nitrogen-water stress.Further analysis was performed whereby the wavelet features were then split into high-scale and low-scale feature subsets for identification.The accuracies of high-scale and low-scale features with an overall accuracy(OA)of 0.61 and 0.73 respectively were lower than those of all wavelet features with an OA of 0.88.The detection of the severity of stripe rust using this method showed an enhanced reliability(R^(2)=0.828).展开更多
This paper proposes a novel continuous wavelet transform(CWT) based approach to holistically estimate the dominant oscillation using measurement data from multiple channels. CWT has been demonstrated to be effective i...This paper proposes a novel continuous wavelet transform(CWT) based approach to holistically estimate the dominant oscillation using measurement data from multiple channels. CWT has been demonstrated to be effective in estimating power system oscillation modes.Using singular value decomposition(SVD) technique, the original huge phasor measurement unit(PMU) datasets are compressed to finite useful measurement data which contain critical dominant oscillation information. Further,CWT is performed on the constructed measurement signals to form wavelet coefficient matrix(WCM) at the same dilation. Then, SVD is employed to decompose the WCMs to obtain the maximum singular value and its right eigenvector. A singular value vector with the entire dilation is constructed through the maximum singular values. The right eigenvector corresponding to the maximum singular value in the singular-value vector is adopted as the input of CWT to estimate the dominant modes. Finally, the proposed approach is evaluated using the simulation data from China Southern Power Grid(CSG) as well as the actual field-measurement data retrieved from the PMUs of CSG.The simulation results demonstrate that the proposed approach performs well to holistically estimate the dominant oscillation modes in bulk power systems.展开更多
The spatio-temporal characteristics of the velocity fluctuations in a fully-developed turbulent boundary layer flow was investigated using hotwire. A low-speed wind tunnel was established. The experimental data was ex...The spatio-temporal characteristics of the velocity fluctuations in a fully-developed turbulent boundary layer flow was investigated using hotwire. A low-speed wind tunnel was established. The experimental data was extensively analyzed in terms of continuous wavelet transform coefficients and their auto-correlation. The results yielded a potential wealth of information on inherent characteristics of coherent structures embedded in turbulent boundary layer flow. Spatial and temporal variations of the low- and high- frequency motions were revealed.展开更多
Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic da...Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.展开更多
Sea ice surface roughness(SIR)affects the energy transfer between the atmosphere and the ocean,and it is also an important indicator for sea ice characteristics.To obtain a small-scale SIR with high spatial resolution...Sea ice surface roughness(SIR)affects the energy transfer between the atmosphere and the ocean,and it is also an important indicator for sea ice characteristics.To obtain a small-scale SIR with high spatial resolution,a novel method is proposed to retrieve SIR from Sentinel-1 synthetic aperture radar(SAR)images,utilizing an ensemble learning method.Firstly,the two-dimensional continuous wavelet transform is applied to obtain the spatial information of sea ice,including the scale and direction of ice patterns.Secondly,a model is developed using the Adaboost Regression model to establish a relationship among SIR,radar backscatter and the spatial information of sea ice.The proposed method is validated by using the SIR retrieved from SAR images and comparing it to the measurements obtained by the Airborne Topographic Mapper(ATM)in the summer Beaufort Sea.The determination of coefficient,mean absolute error,root-mean-square error and mean absolute percentage error of the testing data are 0.91,1.71 cm,2.82 cm,and 36.37%,respectively,which are reasonable.Moreover,K-fold cross-validation and learning curves are analyzed,which also demonstrate the method’s applicability in retrieving SIR from SAR images.展开更多
This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ...This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.展开更多
A critical problem facing data collection in structural health monitoring,for instance via sensor networks,is how to extract the main components and useful features for damage detection.A structural dynamic measuremen...A critical problem facing data collection in structural health monitoring,for instance via sensor networks,is how to extract the main components and useful features for damage detection.A structural dynamic measurement is more often a complex time-varying process and therefore,is prone to dynamic changes in time-frequency contents.To extract the signal components and capture the useful features associated with damage from such nonstationary signals,a technique that combines the time and frequency analysis and shows the signal evolution in both time and frequency is required.Wavelet analyses have proven to be a viable and effective tool in this regard.Wavelet transform(WT)can analyze different signal components and then comparing the characteristics of each signal with a resolution matched to its scale.However,the challenge is the selection of a proper wavelet since various wavelets with varied properties that are to analyze the same data may result in different results.This article presents a study on how to carry out a comparative analysis based on analytic wavelet scalograms,using structural dynamic acceleration responses,to evaluate the effectiveness of various wavelets for damage detection in civil structures.The scalogram’s informative time-frequency regions are examined to analyze the variation of wavelet coefficients and show how the frequency content of a signal changes over time to detect transient events due to damage.Subsequently,damage-induced changes are tracked with time-frequency representations.Towards this aim,energy distribution and sharing information are investigated.The undamaged and damaged simulated comparative results of a structure reveal that the damaged structure were shifted from the undamaged structure.Also,the Bump wavelet shows the best results than the others.展开更多
Rolling element-bearing diagnostics has been studied over the last thirty years, and envelope analysis is widely recognized as being the best approach for detection and diagnosis of rolling element bearing incipient f...Rolling element-bearing diagnostics has been studied over the last thirty years, and envelope analysis is widely recognized as being the best approach for detection and diagnosis of rolling element bearing incipient failure. But one of the on-going difficulties with envelope technique is to determine the best frequency band to envelop. Here, wavelet transform technique is introduced into envelope analysis to solve the problem by capturing bearing defects-sensory scales (i.e. frequency bands). A modulated Gaussian function is chosen to be the analytical wavelet because it coincides well with bearing defect-induced vibration signal patterns. Vibration signals measured from railway bearing tests were studied by the proposed method. Cases of bearings with single and multiple defects on inner and outer race under different testing conditions are presented. Experimental results showed that the proposed method allowed a more accurate local description and separation of transient signal part, which were caused by impacts between defects and the mating surfaces in the bearing. The combination method provides an effective signal detection technique for rolling element-bearing diagnostics.展开更多
For applications requiring low-power,low-voltage and real-time,a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed. Marr wavelet is approximated by a...For applications requiring low-power,low-voltage and real-time,a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed. Marr wavelet is approximated by a parameterized class of function and with Levenbery-Marquardt nonlinear least square method,the optimum parameters of this function are obtained. The circuits of implementating Marr wavelet transform are composed of analog filter whose impulse response is the required wavelet. The filter design is based on IFLF structure with CMOS log-domain integrators as the main building blocks. SPICE simulations indicate an excellent approximations of ideal wavelet.展开更多
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
基金the National Natural Science Foundation of China (41101395, 41071276, 31071324)the Beijing Municipal Natural Science Foundation, China (4122032)the National Basic Research Program of China (2011CB311806)
文摘Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination of CWA and PLSR was found to be promising in providing relatively accurate estimates of disease severity of powdery mildew on leaf level.
基金Provicial Natural Science Foundation of Shanxi,China(No.991051)Provincial Foundation for Homecoming Personnel from Study Abroad of Shanxi,China(No.194-101005)
文摘As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.
基金supported by the National Natural Science Foundation of China (42071420)the Major Special Project for 2025 Scientific,Technological Innovation (Major Scientific and Technological Task Project in Ningbo City)(2021Z048)the National Key Research and Development Program of China(2019YFE0125300)。
文摘Spectroscopy can be used for detecting crop characteristics. A goal of crop spectrum analysis is to extract effective features from spectral data for establishing a detection model. An ideal spectral feature set should have high sensitivity to target parameters but low information redundancy among features.However, feature-selection methods that satisfy both requirements are lacking. To address this issue,in this study, a novel method, the continuous wavelet projections algorithm(CWPA), was developed,which has advantages of both continuous wavelet analysis(CWA) and the successive projections algorithm(SPA) for generating optimal spectral feature set for crop detection. Three datasets collected for crop stress detection and retrieval of biochemical properties were used to validate the CWPA under both classification and regression scenarios. The CWPA generated a feature set with fewer features yet achieving accuracy comparable to or even higher than those of CWA and SPA. With only two to three features identified by CWPA, an overall accuracy of 98% in classifying tea plant stresses was achieved, and high coefficients of determination were obtained in retrieving corn leaf chlorophyll content(R^(2)= 0.8521)and equivalent water thickness(R^(2)= 0.9508). The mechanism of the CWPA ensures that the novel algorithm discovers the most sensitive features while retaining complementarity among features. Its ability to reduce the data dimension suggests its potential for crop monitoring and phenotyping with hyperspectral data.
基金This project is supported by National Natural Science Foundation of China (No. 50105007)Program for New Century Excellent Talents in University, China.
文摘Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT.
基金supported by Wright State UniversityDayton+2 种基金OHU.S.A.The authors thank Professor K.T.CHRISTENSEN at University of Illinois at Urbana-Champaign for providing the roughness topography data
文摘Continuous Morlet and Mexican hat wavelets are used to analyze a highly irregular rough surface replicated from real turbine blades which are roughened by deposi-tion of foreign materials. The globally dominant aspect ratio, length scale, and orientation of the roughness elements are determined. These parameters extracted from this highly irregular rough surface are important for the future studies of their effects on turbulent flows over this kind of rough surfaces encountered in Washington aerospace and power generating industries.
文摘Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering areas like audio de-noising, signal compression, object detection, image decomposition, speech recognition etc. Wavelet analysis employs orthonormal as well as non-orthonornal functions. This research investigates the effectiveness of wavelet analysis in detecting defects in underground steel pipe networks. Continuous Wavelet Transforms (CWT) has been performed on the received signals of cylindrical guided waves. Cylindrical Guided waves are generated and propagated through the pipe wall boundaries in a pitch-catch system. Piezo-electric transducers are used to generate as well as receive guided waves. Several mother wavelet functions such as Daubechies, Symlet, Coiflet and Meyer have been used for the Continuous Wavelet Transform to investigate the most suitable function for defect detection. This research also investigates the effect of surrounding soil on wavelet transforms for different mother wavelet functions.
基金supported by the National Natural Science Foundation of China (Grant No. 10775097)the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097)
文摘In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.
文摘A new algorithm to compute continuous wavelet transforms at dyadic scales is proposed here. Our approach has a similar implementation with the standard algorithme a trous and can coincide with it in the one dimensional lower order spline case.Our algorithm can have arbitrary order of approximation and is applicable to the multidimensional case.We present this algorithm in a general case with emphasis on splines anti quast in terpolations.Numerical examples are included to justify our theorerical discussion.
文摘The continuous wavelet transform(CWT)based method was improved for estimating the natural frequencies and damping ratios of a structural system in this paper.The appropriate scale of CWT was selected by means of the least squares method to identify the systems with closely spaced modes.The important issues related to estimation accuracy such as mode separation and end effect,were also investigated.These issues were associated with the parameter selection of wavelet function based on the fitting error of least squares.The efficiency of the method was confirmed by applying it to a simulated 3dof damped system with two close modes.
文摘Based on the Gauss linear frequency modulated wavelet transform, a new characteristic index is presented, namely time frequency energy attenuation factor which can reflect the difference features of waveform in earthquake focus mechanism, wave traveling path and its attenuation characteristics in focal area or near field. In order to test its validity, we select the natural earthquakes and explosion or collapse events whose focus mechanisms vary obviously,and some natural earthquakes located at the same site or in a very small area. The study indicates that the time frequency energy attenuation factors of the natural earthquakes are obviously different with that of explosion or collapse events, and the change of the time frequency energy attenuation factors is relatively stable for the earthquakes under the normal seismicity background. Using the above mentioned method, it is expected to offer a useful criterion for strong earthquake prediction by continuous earthquake observation.
基金supported by Free Exploration Project of the State Key Laboratory of Remote Sensing Science at Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(17ZY-01)the National Natural Science Foundation of China(61661136004)Hainan Provincial Department of Science and Technology under Grant(ZDKJ2016021).
文摘It is necessary to quantitatively identify different diseases and nitrogen-water stress for the guidance in spraying specific fungicides and fertilizer applications.The winter wheat diseases,in combination with nitrogen-water stress,are therefore common causes of yield loss in winter wheat in China.Powdery mildew(Blumeria graminis)and stripe rust(Puccinia striiformis f.sp.Tritici)are two of the most prevalent winter wheat diseases in China.This study investigated the potential of continuous wavelet analysis to identify the powdery mildew,stripe rust and nitrogen-water stress using canopy hyperspectral data.The spectral normalization process was applied prior to the analysis.Independent t-tests were used to determine the sensitivity of the spectral bands and vegetation index.In order to reduce the number of wavelet regions,correlation analysis and the independent t-test were used in conjunction to select the features of greatest importance.Based on the selected spectral bands,vegetation indices and wavelet features,the discriminate models were established using Fisher’s linear discrimination analysis(FLDA)and support vector machine(SVM).The results indicated that wavelet features were superior to spectral bands and vegetation indices in classifying different stresses,with overall accuracies of 0.91,0.72,and 0.72 respectively for powdery mildew,stripe rust and nitrogen-water by using FLDA,and 0.79,0.67 and 0.65 respectively by using SVM.FLDA was more suitable for differentiating stresses in winter wheat,with respective accuracies of 78.1%,95.6%and 95.7%for powdery mildew,stripe rust,and nitrogen-water stress.Further analysis was performed whereby the wavelet features were then split into high-scale and low-scale feature subsets for identification.The accuracies of high-scale and low-scale features with an overall accuracy(OA)of 0.61 and 0.73 respectively were lower than those of all wavelet features with an OA of 0.88.The detection of the severity of stripe rust using this method showed an enhanced reliability(R^(2)=0.828).
文摘This paper proposes a novel continuous wavelet transform(CWT) based approach to holistically estimate the dominant oscillation using measurement data from multiple channels. CWT has been demonstrated to be effective in estimating power system oscillation modes.Using singular value decomposition(SVD) technique, the original huge phasor measurement unit(PMU) datasets are compressed to finite useful measurement data which contain critical dominant oscillation information. Further,CWT is performed on the constructed measurement signals to form wavelet coefficient matrix(WCM) at the same dilation. Then, SVD is employed to decompose the WCMs to obtain the maximum singular value and its right eigenvector. A singular value vector with the entire dilation is constructed through the maximum singular values. The right eigenvector corresponding to the maximum singular value in the singular-value vector is adopted as the input of CWT to estimate the dominant modes. Finally, the proposed approach is evaluated using the simulation data from China Southern Power Grid(CSG) as well as the actual field-measurement data retrieved from the PMUs of CSG.The simulation results demonstrate that the proposed approach performs well to holistically estimate the dominant oscillation modes in bulk power systems.
文摘The spatio-temporal characteristics of the velocity fluctuations in a fully-developed turbulent boundary layer flow was investigated using hotwire. A low-speed wind tunnel was established. The experimental data was extensively analyzed in terms of continuous wavelet transform coefficients and their auto-correlation. The results yielded a potential wealth of information on inherent characteristics of coherent structures embedded in turbulent boundary layer flow. Spatial and temporal variations of the low- and high- frequency motions were revealed.
基金supported by the National Natural Science Foundation of China (Nos. 41304096, 41230318)National High-tech R&D Program of China (863 Program) (No. 2013AA0925010201)+1 种基金Foundation of Ministry of Education of China (No. 20130132120014)the Fundamental Research Funds for the Central Universities (Nos. 1313017, 1362013)
文摘Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.
基金The National Key Research and Development Program of China under contract No.2021YFC2803301the National Natural Science Foundation of China under contract No.41977302+2 种基金the National Natural Science Youth Foundation of China under contract No.41506199the Natural Science Youth Foundation of Jiangsu Province under contrant No.BK20150905the Science and Technology Project of China Huaneng Group Co.,Ltd.under contract No.HNKJ20-H66.
文摘Sea ice surface roughness(SIR)affects the energy transfer between the atmosphere and the ocean,and it is also an important indicator for sea ice characteristics.To obtain a small-scale SIR with high spatial resolution,a novel method is proposed to retrieve SIR from Sentinel-1 synthetic aperture radar(SAR)images,utilizing an ensemble learning method.Firstly,the two-dimensional continuous wavelet transform is applied to obtain the spatial information of sea ice,including the scale and direction of ice patterns.Secondly,a model is developed using the Adaboost Regression model to establish a relationship among SIR,radar backscatter and the spatial information of sea ice.The proposed method is validated by using the SIR retrieved from SAR images and comparing it to the measurements obtained by the Airborne Topographic Mapper(ATM)in the summer Beaufort Sea.The determination of coefficient,mean absolute error,root-mean-square error and mean absolute percentage error of the testing data are 0.91,1.71 cm,2.82 cm,and 36.37%,respectively,which are reasonable.Moreover,K-fold cross-validation and learning curves are analyzed,which also demonstrate the method’s applicability in retrieving SIR from SAR images.
文摘This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.
文摘A critical problem facing data collection in structural health monitoring,for instance via sensor networks,is how to extract the main components and useful features for damage detection.A structural dynamic measurement is more often a complex time-varying process and therefore,is prone to dynamic changes in time-frequency contents.To extract the signal components and capture the useful features associated with damage from such nonstationary signals,a technique that combines the time and frequency analysis and shows the signal evolution in both time and frequency is required.Wavelet analyses have proven to be a viable and effective tool in this regard.Wavelet transform(WT)can analyze different signal components and then comparing the characteristics of each signal with a resolution matched to its scale.However,the challenge is the selection of a proper wavelet since various wavelets with varied properties that are to analyze the same data may result in different results.This article presents a study on how to carry out a comparative analysis based on analytic wavelet scalograms,using structural dynamic acceleration responses,to evaluate the effectiveness of various wavelets for damage detection in civil structures.The scalogram’s informative time-frequency regions are examined to analyze the variation of wavelet coefficients and show how the frequency content of a signal changes over time to detect transient events due to damage.Subsequently,damage-induced changes are tracked with time-frequency representations.Towards this aim,energy distribution and sharing information are investigated.The undamaged and damaged simulated comparative results of a structure reveal that the damaged structure were shifted from the undamaged structure.Also,the Bump wavelet shows the best results than the others.
文摘Rolling element-bearing diagnostics has been studied over the last thirty years, and envelope analysis is widely recognized as being the best approach for detection and diagnosis of rolling element bearing incipient failure. But one of the on-going difficulties with envelope technique is to determine the best frequency band to envelop. Here, wavelet transform technique is introduced into envelope analysis to solve the problem by capturing bearing defects-sensory scales (i.e. frequency bands). A modulated Gaussian function is chosen to be the analytical wavelet because it coincides well with bearing defect-induced vibration signal patterns. Vibration signals measured from railway bearing tests were studied by the proposed method. Cases of bearings with single and multiple defects on inner and outer race under different testing conditions are presented. Experimental results showed that the proposed method allowed a more accurate local description and separation of transient signal part, which were caused by impacts between defects and the mating surfaces in the bearing. The combination method provides an effective signal detection technique for rolling element-bearing diagnostics.
文摘For applications requiring low-power,low-voltage and real-time,a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed. Marr wavelet is approximated by a parameterized class of function and with Levenbery-Marquardt nonlinear least square method,the optimum parameters of this function are obtained. The circuits of implementating Marr wavelet transform are composed of analog filter whose impulse response is the required wavelet. The filter design is based on IFLF structure with CMOS log-domain integrators as the main building blocks. SPICE simulations indicate an excellent approximations of ideal wavelet.