Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and t...Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。展开更多
To maximize the number of vehicles passing by the stop-line in a cycle and improve the operation efficiency of intersection in China, the settlement of left-turn lane waiting-zone is becoming prevailing. Based on conf...To maximize the number of vehicles passing by the stop-line in a cycle and improve the operation efficiency of intersection in China, the settlement of left-turn lane waiting-zone is becoming prevailing. Based on conflicting-point method, the internal mechanism of left-turn flow after stopping line was analyzed through taking postposition left-turn lane waiting-zone intersection for instance. The relationship between the first left-turn vehicle and the last vehicle of previous phase passing the conflicting point was expounded. According to the time of successive arriving of two vehicle flows at conflicting-point, the reasonable layout for waiting area of left-turn vehicles was researched when the clearance index was less than O. The results suggest that the appropriate layout for waiting area of left-turning vehicles can improve the operation efficiency of intersections.展开更多
The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. Th...The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. The relationship was investigated under two different conditions. The number of opposing left-turn conflicts was positively correlated with the number of left-turn vehicles while the ratio of left-turn vehicles to opposing vehicles was less than 1, and showed a positive correlation with the number of opposing-through vehicles when the ratio of left-turn vehicles to opposing vehi- cles was more than 1. In other words, the opposing left-turn risk was positively correlated with the number of the minor traffic participants, which had a negative effect on the whole traffic system op- eration.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occur...Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity,accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened.展开更多
As one of the UAIDs(unconventional alternative intersection designs),DLTs(displaced left-turn crossovers)have been presented to mitigate traffic congestion.Although,qualitatively and quantitatively isolated UAIDs outp...As one of the UAIDs(unconventional alternative intersection designs),DLTs(displaced left-turn crossovers)have been presented to mitigate traffic congestion.Although,qualitatively and quantitatively isolated UAIDs outperform their conventional counterparts,there is no simplified procedure to consider the DLTs coordination.Hence,this research investigates the coordination of consecutive DLTs under heterogeneous traffic conditions.To achieve the optimal coordination and provide an efficient coordination control,a bandwidth maximization progression approach was used.Seeking the optimal offset for each pair of consecutive intersections to guarantee the green bandwidth waves along the coordinated corridor,a mixed-integer linear program was adopted.The optimization problem was formulated and solved based on the standard branch-and-bound technique.As a real-world study case,data of three typical intersections located in an arterial corridor in Cairo,Egypt was used.PTV-VISSIM as a microsimulation platform was employed to simulate and evaluate the different signal timing plans.However,to represent the heterogeneous traffic characteristics as close as possible to the reality,different simulation parameters were tuned and validated carefully.The results emphasized the undoubted improvement of coordinated DLTs by different operational performance indices.The total travel time,average delay,the number of stops per vehicle were obviously improved.展开更多
Heavily congested intersections in metropolitan areas in China are facing unique problems due to high travel demand and a high degree of traffic law violations. Based on a study conducted by the authors of this paper,...Heavily congested intersections in metropolitan areas in China are facing unique problems due to high travel demand and a high degree of traffic law violations. Based on a study conducted by the authors of this paper, 93% of left-turn vehicles turning left in these areas were slowed in order to avoid conflict with pedestrians. Intertwined pedestrian and vehicular flows can significantly reduce the capacity of exclusive left-turn lane group through reducing saturation flow rate, which increases the congestion at intersections. This paper investigates how the saturation flow rate of exclusive left-turn lane group is affected by the characteristics of pedestrian flow. By analyzing the imagery data collected by video cameras installed at intersections, the research team is able to obtain the characteristics of both vehicular and pedestrian flows, such as speed and spatial locations. The average operating speed at the saturation flow rate with and without pedestrian traffic is used as a direct measurement to evaluate the effect of pedestrians. Based on the statistical analysis, the paper concludes that saturation flow rate is mainly affected by the position of pedestrian in the crosswalk (inside or outside of left-turn vehicle’s trajectory), and the distance between the vehicle and pedestrians. In general, when the distance is less than four meters, the smaller the distance between vehicle and pedestrians, the larger the impact. However, there is no significant impact when the distance is larger than four meters. To accurately quantify the effect, the degree of pedestrian-vehicle impact is defined in four levels. The results show that the difference in the saturation flow rate between the best and the worst level could be 15.7%, which clearly indicates how important it is to enforce pedestrian crossing behavior.展开更多
Left-turning traffic without a protected left-turn signal is one of the major safety concerns at urban intersections. Though an average of only l0% - 15% of all approaching traffic turns left, significantly a large pr...Left-turning traffic without a protected left-turn signal is one of the major safety concerns at urban intersections. Though an average of only l0% - 15% of all approaching traffic turns left, significantly a large proportion of left-turn crashes occur involving 21% of all intersection fatal crashes. Where traditional safety countermeasures of signal timing-phasing and use of flashing yellow light have reportedly failed to significantly reduce the rate of crashes, an in-vehicle advance collision warning message can be helpful to reduce left-turn collisions at intersections. In this study, an in-vehicle audio warning application has been designed by providing two safety warning messages (Advance Warning Message and Safe Left-turn Maneuver Message) under the vehicle to vehicle (V2V) communication system, which is triggered based on the acceptable gaps of oncoming opposing vehicles for a safe left-turn. A driving simulator test has been conducted with 30 participants to investigate the impacts of warning messages on performance measures such as speed and acceleration profiles, collision records, brake reaction distance, and intersection clearance time. Statistical results showed that with the help of these messages, all participants were able to reduce speeds and accelerations and chose suitable gaps without potential conflicts. Moreover, the results of questionnaire analysis provide a positive acceptability especially for the Safe Left-turn Maneuver Message. Based on the performance measurements, this type of safety warning messages can be recommended for possible real-road tests for practical applications.展开更多
In response to local sudden disasters,e.g.,high-rise office or residential building fire disasters,road occupation can cause conflicts,and traffic directions may be opposite between evacuation vehicles and rescue vehi...In response to local sudden disasters,e.g.,high-rise office or residential building fire disasters,road occupation can cause conflicts,and traffic directions may be opposite between evacuation vehicles and rescue vehicles;moreover,lane contraflow can be adopted to meet these surge traffic demands.However,lane contraflow that provides more roads for rescue vehicles reduces the traffic supply in the evacuation direction.It is unclear how to control the number of contraflow roads used by rescue vehicles to coordinate evacuation and rescue traffic operations.Here,we adjust the critical rescue traffic volume of reversing the normal road traffic direction to control rescue contraflow.Additionally,we propose a multiobjective mixed integer linear programming formulation for evacuation and rescue traffic optimization.Additionally,considering that the upper limit of the critical rescue traffic volume is unknown and that the proposed formulation includes multiple objectives and multi-priority vehicle classes,a three-stage solving algorithm is developed.Next,a large-scale evacuation and rescue traffic optimization result dataset is obtained for the Nguyen–Dupuis road network,and the impact of different rescue contraflow control plans on evacuation and rescue traffic is studied based on data-driven sta-tistical analysis.The results show that by adjusting the optimal rescue traffic route,the critical rescue traffic volume for reversing the normal road traffic direction can reduce the interference of rescue traffic to evacuation traffic operation performance without reducing rescue traffic operation performance,and can be used to coor-dinate evacuation and rescue traffic operation under rescue contraflow.展开更多
From the historical background for the development of T.D.Lysenko School,T.D.Lysenko’s New Genetics,his personal worship and persecution on the scientists in the former Soviet Union,the reactionary essence of pse...From the historical background for the development of T.D.Lysenko School,T.D.Lysenko’s New Genetics,his personal worship and persecution on the scientists in the former Soviet Union,the reactionary essence of pseudoscience of T.D.Lysenko school was deeply exposed and it was pointed put that its perdition was inevitable.At last analysis was made on the cause of occurrence of T.D.Lysenko’s doctrine and historical lessons to be drawn.展开更多
基金the National Natural Science Foundation of China under Grant No.71971140the Soft Science Research Project of Shanghai No.22692194500the Pujiang Program under Grant No.21PJC085.
文摘Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。
基金Sponsored by the National Natural Science Foundation of China(Grant No.70631002)Youth Science &Technology Foundation of Xi’an University of Architecture &Technology(Grant No.0608)
文摘To maximize the number of vehicles passing by the stop-line in a cycle and improve the operation efficiency of intersection in China, the settlement of left-turn lane waiting-zone is becoming prevailing. Based on conflicting-point method, the internal mechanism of left-turn flow after stopping line was analyzed through taking postposition left-turn lane waiting-zone intersection for instance. The relationship between the first left-turn vehicle and the last vehicle of previous phase passing the conflicting point was expounded. According to the time of successive arriving of two vehicle flows at conflicting-point, the reasonable layout for waiting area of left-turn vehicles was researched when the clearance index was less than O. The results suggest that the appropriate layout for waiting area of left-turning vehicles can improve the operation efficiency of intersections.
基金Supported by the Programme of Introducing Talents of Discipline to Universities (B12022)
文摘The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. The relationship was investigated under two different conditions. The number of opposing left-turn conflicts was positively correlated with the number of left-turn vehicles while the ratio of left-turn vehicles to opposing vehicles was less than 1, and showed a positive correlation with the number of opposing-through vehicles when the ratio of left-turn vehicles to opposing vehi- cles was more than 1. In other words, the opposing left-turn risk was positively correlated with the number of the minor traffic participants, which had a negative effect on the whole traffic system op- eration.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity,accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened.
文摘As one of the UAIDs(unconventional alternative intersection designs),DLTs(displaced left-turn crossovers)have been presented to mitigate traffic congestion.Although,qualitatively and quantitatively isolated UAIDs outperform their conventional counterparts,there is no simplified procedure to consider the DLTs coordination.Hence,this research investigates the coordination of consecutive DLTs under heterogeneous traffic conditions.To achieve the optimal coordination and provide an efficient coordination control,a bandwidth maximization progression approach was used.Seeking the optimal offset for each pair of consecutive intersections to guarantee the green bandwidth waves along the coordinated corridor,a mixed-integer linear program was adopted.The optimization problem was formulated and solved based on the standard branch-and-bound technique.As a real-world study case,data of three typical intersections located in an arterial corridor in Cairo,Egypt was used.PTV-VISSIM as a microsimulation platform was employed to simulate and evaluate the different signal timing plans.However,to represent the heterogeneous traffic characteristics as close as possible to the reality,different simulation parameters were tuned and validated carefully.The results emphasized the undoubted improvement of coordinated DLTs by different operational performance indices.The total travel time,average delay,the number of stops per vehicle were obviously improved.
文摘Heavily congested intersections in metropolitan areas in China are facing unique problems due to high travel demand and a high degree of traffic law violations. Based on a study conducted by the authors of this paper, 93% of left-turn vehicles turning left in these areas were slowed in order to avoid conflict with pedestrians. Intertwined pedestrian and vehicular flows can significantly reduce the capacity of exclusive left-turn lane group through reducing saturation flow rate, which increases the congestion at intersections. This paper investigates how the saturation flow rate of exclusive left-turn lane group is affected by the characteristics of pedestrian flow. By analyzing the imagery data collected by video cameras installed at intersections, the research team is able to obtain the characteristics of both vehicular and pedestrian flows, such as speed and spatial locations. The average operating speed at the saturation flow rate with and without pedestrian traffic is used as a direct measurement to evaluate the effect of pedestrians. Based on the statistical analysis, the paper concludes that saturation flow rate is mainly affected by the position of pedestrian in the crosswalk (inside or outside of left-turn vehicle’s trajectory), and the distance between the vehicle and pedestrians. In general, when the distance is less than four meters, the smaller the distance between vehicle and pedestrians, the larger the impact. However, there is no significant impact when the distance is larger than four meters. To accurately quantify the effect, the degree of pedestrian-vehicle impact is defined in four levels. The results show that the difference in the saturation flow rate between the best and the worst level could be 15.7%, which clearly indicates how important it is to enforce pedestrian crossing behavior.
文摘Left-turning traffic without a protected left-turn signal is one of the major safety concerns at urban intersections. Though an average of only l0% - 15% of all approaching traffic turns left, significantly a large proportion of left-turn crashes occur involving 21% of all intersection fatal crashes. Where traditional safety countermeasures of signal timing-phasing and use of flashing yellow light have reportedly failed to significantly reduce the rate of crashes, an in-vehicle advance collision warning message can be helpful to reduce left-turn collisions at intersections. In this study, an in-vehicle audio warning application has been designed by providing two safety warning messages (Advance Warning Message and Safe Left-turn Maneuver Message) under the vehicle to vehicle (V2V) communication system, which is triggered based on the acceptable gaps of oncoming opposing vehicles for a safe left-turn. A driving simulator test has been conducted with 30 participants to investigate the impacts of warning messages on performance measures such as speed and acceleration profiles, collision records, brake reaction distance, and intersection clearance time. Statistical results showed that with the help of these messages, all participants were able to reduce speeds and accelerations and chose suitable gaps without potential conflicts. Moreover, the results of questionnaire analysis provide a positive acceptability especially for the Safe Left-turn Maneuver Message. Based on the performance measurements, this type of safety warning messages can be recommended for possible real-road tests for practical applications.
基金supported by the National Natural Science Foundation of China(no.72242102,72271021)the humanities and Social Sciences Fund of Ministry of Education of China(no.23YJC630124)the Henan Provincial Science and Technology Research Project of China(no.232102320021).
文摘In response to local sudden disasters,e.g.,high-rise office or residential building fire disasters,road occupation can cause conflicts,and traffic directions may be opposite between evacuation vehicles and rescue vehicles;moreover,lane contraflow can be adopted to meet these surge traffic demands.However,lane contraflow that provides more roads for rescue vehicles reduces the traffic supply in the evacuation direction.It is unclear how to control the number of contraflow roads used by rescue vehicles to coordinate evacuation and rescue traffic operations.Here,we adjust the critical rescue traffic volume of reversing the normal road traffic direction to control rescue contraflow.Additionally,we propose a multiobjective mixed integer linear programming formulation for evacuation and rescue traffic optimization.Additionally,considering that the upper limit of the critical rescue traffic volume is unknown and that the proposed formulation includes multiple objectives and multi-priority vehicle classes,a three-stage solving algorithm is developed.Next,a large-scale evacuation and rescue traffic optimization result dataset is obtained for the Nguyen–Dupuis road network,and the impact of different rescue contraflow control plans on evacuation and rescue traffic is studied based on data-driven sta-tistical analysis.The results show that by adjusting the optimal rescue traffic route,the critical rescue traffic volume for reversing the normal road traffic direction can reduce the interference of rescue traffic to evacuation traffic operation performance without reducing rescue traffic operation performance,and can be used to coor-dinate evacuation and rescue traffic operation under rescue contraflow.
文摘From the historical background for the development of T.D.Lysenko School,T.D.Lysenko’s New Genetics,his personal worship and persecution on the scientists in the former Soviet Union,the reactionary essence of pseudoscience of T.D.Lysenko school was deeply exposed and it was pointed put that its perdition was inevitable.At last analysis was made on the cause of occurrence of T.D.Lysenko’s doctrine and historical lessons to be drawn.