The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev...The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.展开更多
The pull-based software development helps developers make contributions flexibly and efficiently. Core members evaluate code changes submitted by contributors, and decide whether to merge these code changes into repos...The pull-based software development helps developers make contributions flexibly and efficiently. Core members evaluate code changes submitted by contributors, and decide whether to merge these code changes into repositories or not. Ideally, code changes are assigned to core members and evaluated within a short time after their submission. However, in reality, some popular projects receive many pull requests, and core members have difficulties in choosing pull requests which are to be evaluated. Therefore, there is a growing need for automatic core member recommendation, which improves the evaluation process. In this paper, we investigate pull requests with manual assignment. Results show that 3.2%~40.6% of pull requests are manually assigned to specific core members. To assist with the manual assignment, we propose CoreDevRec to recommend core members for contribution evaluation in GitHub. CoreDevRec uses support vector machines to analyze different kinds of features, including file paths of modified codes, relationships between contributors and core members, and activeness of core members. We evaluate CoreDevRec on 18 651 pull requests of five popular projects in GitHub. Results show that CoreDevRec achieves accuracy from 72.9% to 93.5% for top 3 recommendation. In comparison with a baseline approach, CoreDevRec improves the accuracy from 18.7% to 81.3% for top 3 recommendation. Moreover, CoreDevRec even has higher accuracy than manual assignment in the project TrinityCore. We believe that CoreDevRec can improve the assignment of pull requests.展开更多
The global financial crisis has brought stateowned enterprises (SOEs) into the spotlight. Even Western countries like the U.S. have been forced to take some measures of nationalization, a departure
基金supported by the National Key Research and Development Project(2018YFB1700802)the National Natural Science Foundation of China(72071206)the Science and Technology Innovation Plan of Hunan Province(2020RC4046).
文摘The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.
基金the National Natural Science Foundation of China under Grant No. 61300006 and the State Key Laboratory of Software Development Environment of China under Grant No. SKLSDE-2015ZX-24.
文摘The pull-based software development helps developers make contributions flexibly and efficiently. Core members evaluate code changes submitted by contributors, and decide whether to merge these code changes into repositories or not. Ideally, code changes are assigned to core members and evaluated within a short time after their submission. However, in reality, some popular projects receive many pull requests, and core members have difficulties in choosing pull requests which are to be evaluated. Therefore, there is a growing need for automatic core member recommendation, which improves the evaluation process. In this paper, we investigate pull requests with manual assignment. Results show that 3.2%~40.6% of pull requests are manually assigned to specific core members. To assist with the manual assignment, we propose CoreDevRec to recommend core members for contribution evaluation in GitHub. CoreDevRec uses support vector machines to analyze different kinds of features, including file paths of modified codes, relationships between contributors and core members, and activeness of core members. We evaluate CoreDevRec on 18 651 pull requests of five popular projects in GitHub. Results show that CoreDevRec achieves accuracy from 72.9% to 93.5% for top 3 recommendation. In comparison with a baseline approach, CoreDevRec improves the accuracy from 18.7% to 81.3% for top 3 recommendation. Moreover, CoreDevRec even has higher accuracy than manual assignment in the project TrinityCore. We believe that CoreDevRec can improve the assignment of pull requests.
文摘The global financial crisis has brought stateowned enterprises (SOEs) into the spotlight. Even Western countries like the U.S. have been forced to take some measures of nationalization, a departure