Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axi...Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively.展开更多
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer...Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the s...To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally.展开更多
CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energ...CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling ...The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling system with an ERF damper is established, and thechaffer suppression mechanism of the ER effect is discussed theoretically. Both the theoreticalstudy and the experimental investigation show that the additional damping and additional stiffnessproduced by the ERF increase with the rise in the strength of electric field E, but their influenceon the cuffing stability is different. Only when both additional damping and additional stiffnesscooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERFdamper used on the arbor of horizontal spindle milling machine is developed, and a series of millingchatter control experiments are performed. The experimental results show that the milling chaffercan be suppressed effectively by using the ER damper.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed ...An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.展开更多
Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and w...Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.展开更多
To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with con...To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.展开更多
This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the ...This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.展开更多
The article introduces the unique characteristics of CNC machining center cutter compared to traditional cutters, analyzes the choice of CNC machining cutter and factors of choice. Meanwhile, proved by the examples wi...The article introduces the unique characteristics of CNC machining center cutter compared to traditional cutters, analyzes the choice of CNC machining cutter and factors of choice. Meanwhile, proved by the examples with manufacture software CAXA2004, the correct choice of CNC machining center cutter can give full play to the advantages of CNC machining and improve the economic efficiency and production levels of enterprises.展开更多
High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine.However,the complex relationships in tension system make the probl...High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine.However,the complex relationships in tension system make the problems of decoupling control difficult to be solved,which has limited the improvement of tension control accuracy for the coating machine.Therefore,an ADRC parameters self-tuning decoupling strategy based on RBF neural network is proposed to improve the control accuracy of tension system in this paper.Firstly,a global coupling nonlinear model of the tension system is established according to the composition of the coating machine,and the global coupling model is linearized based on the first-order Taylor formula.Secondly,according to the linear model of the tension system,a parameters self-tuning decoupling algorithm of the tension system is proposed by integrating feedforward control,ADRC and RBF.Finally,the simulation results show that the proposed tension control strategy has good decoupling control performance and effectively improves the tension control accuracy for the coating machine.展开更多
基金This project is supported by National Natural Science Foundation of China and the Eight-Five Year Plan National Key Projects. Ma
文摘Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively.
基金Supported by Natural Science Foundation of Shaanxi Province of China(Grant No.2021JM010)Suzhou Municipal Natural Science Foundation of China(Grant Nos.SYG202018,SYG202134).
文摘Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
基金supported by National Natural Science Foundation of China (Grant No. 50775228)Municipality Key Scientific & Technological Program of Chongqing, China (Grant No. CSTC2007AA2013)+1 种基金Fundamental Research Funds for the Central Universities of China (Grant No. CDJXS11111136)Program for New Century Excellent Talents in University of Ministry of Education of China
文摘To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally.
基金Supported by National Natural Science Foundation of China(Grant No.51605058)Chongqing Research Program of Basic Research and Frontier Technology of China(Grant No.cstc2015jcyjBX0088)+2 种基金Fundamental Research Funds for the Central Universities of China(Grant No.106112016CDJCR021226)Six Talent Peaks Project in Jiangsu Province of China(Grant No.2014-ZBZZ-006)"Excellence Plans-Zijin Star" Foundation of Nanjing University of Science and Technology,China(Grant No.2015-zijin-07)
文摘CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
基金This project is supported by Provincial Science and Technology Foundation of Jilin, China(No.963532) Received October 11, 2001
文摘The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling system with an ERF damper is established, and thechaffer suppression mechanism of the ER effect is discussed theoretically. Both the theoreticalstudy and the experimental investigation show that the additional damping and additional stiffnessproduced by the ERF increase with the rise in the strength of electric field E, but their influenceon the cuffing stability is different. Only when both additional damping and additional stiffnesscooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERFdamper used on the arbor of horizontal spindle milling machine is developed, and a series of millingchatter control experiments are performed. The experimental results show that the milling chaffercan be suppressed effectively by using the ER damper.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.
基金Sponsored by the Natural Science Foundation of Guangdong Province(Grant No.06025546)the National Natural Science Foundation of China(Grant No.50305005).
文摘Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.
基金Sponsored by the National Excellent Young Teacher Encouragement Plan of China
文摘To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.
文摘This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.
基金supported by the National Science Foundation of Xi'an University of Architecture and Tech-nology under Grant No.JC0919
文摘The article introduces the unique characteristics of CNC machining center cutter compared to traditional cutters, analyzes the choice of CNC machining cutter and factors of choice. Meanwhile, proved by the examples with manufacture software CAXA2004, the correct choice of CNC machining center cutter can give full play to the advantages of CNC machining and improve the economic efficiency and production levels of enterprises.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB1707200)the Key Research and Development Program of Shaanxi Province(Grant No.2020ZDLGY14-06)the Technology Innovation Leading Program of Shaanxi Province(Grant No.2020QFY03-03).
文摘High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine.However,the complex relationships in tension system make the problems of decoupling control difficult to be solved,which has limited the improvement of tension control accuracy for the coating machine.Therefore,an ADRC parameters self-tuning decoupling strategy based on RBF neural network is proposed to improve the control accuracy of tension system in this paper.Firstly,a global coupling nonlinear model of the tension system is established according to the composition of the coating machine,and the global coupling model is linearized based on the first-order Taylor formula.Secondly,according to the linear model of the tension system,a parameters self-tuning decoupling algorithm of the tension system is proposed by integrating feedforward control,ADRC and RBF.Finally,the simulation results show that the proposed tension control strategy has good decoupling control performance and effectively improves the tension control accuracy for the coating machine.