It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is po...It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.展开更多
The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with r...The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.展开更多
The experimental control system of the superelastic hose instability is based on S7-200PLC as controller. The superelastic hoses are sealed at their both ends. The breakdown condition of that is taken as the object of...The experimental control system of the superelastic hose instability is based on S7-200PLC as controller. The superelastic hoses are sealed at their both ends. The breakdown condition of that is taken as the object of study under different combined and working conditions. The upper computer of the experimental bench adopts MCGS configuration software. The test of experiment can meet the control and real-time monitoring of experimental platform conditions. In the experiment,we measure and monitor the data of temperature,tensile force,pressure and so on by the analog modules. During the process of experiment,the actuators like the solenoid valve and the motor are controlled by the switch. The paper describes that the constitution of experimental control system of the superelastic hose instability, control function and the achievement of monitoring condition. It is convenient to operate in the control system,the design cost is low,the man-machine interface is simple and understandable,and the experimental control system will be significant in bio-engineering and medical research.展开更多
With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely an...With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.展开更多
The interaction between the high pressure gas and the control fluid and the movement mechanism of the control fluid in compound perforation were studied by a series of large-scale experiments, where the movement behav...The interaction between the high pressure gas and the control fluid and the movement mechanism of the control fluid in compound perforation were studied by a series of large-scale experiments, where the movement behavior of the control fluid was observed. The curves of measured pressure were analyzed, a mathematical model for the rigid movement of the control fluid was established, and the movement velocity of control fluid was analyzed. Moreover, the velocity from experimental results and velocity from an analytical solution were contrasted. The movement of the control fluid in the initial stage was similar to the rigid movement; however, the propagation of the pressure wave in the control fluid should be taken into account. Experimental results are significant for research on the movement mechanism of control fluid in compound perforation.展开更多
Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface...Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11075035 and 11222544)the Fok Ying Tung Education Foundation,China(Grant No. 131008)+2 种基金the Program for New Century Excellent Talents in University,China (Grant No. NCET-12-0121)the Shanghai Rising-Star Program,China(Grant No. 12QA1400200)the Fundamental Research Funds for the Central Universities,China
文摘It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.
基金This work was supported by the National Natural Science Foundation of China under grant No.50177019by the Education Department of China under grant No.20040142004.
文摘The static and dynamic magnetic controlling characteristics of NiMnGa magnetically controlled shape memory alloy (MSMA) were experimentally studied. The results show that the characteristics of induced strain with respect to the magnetic field are nonlinear with saturation nature, and dependent on the temperature as well as the load applied to the MSMA. The magnetic shape memory effect can be observed only in complete martensite phase at room temperature. The magnetic permeability of MSMA is not constant and reduces with the increment of magnetic field. The relative saturation magnetic permeability of MSMA is about 1.5.
文摘The experimental control system of the superelastic hose instability is based on S7-200PLC as controller. The superelastic hoses are sealed at their both ends. The breakdown condition of that is taken as the object of study under different combined and working conditions. The upper computer of the experimental bench adopts MCGS configuration software. The test of experiment can meet the control and real-time monitoring of experimental platform conditions. In the experiment,we measure and monitor the data of temperature,tensile force,pressure and so on by the analog modules. During the process of experiment,the actuators like the solenoid valve and the motor are controlled by the switch. The paper describes that the constitution of experimental control system of the superelastic hose instability, control function and the achievement of monitoring condition. It is convenient to operate in the control system,the design cost is low,the man-machine interface is simple and understandable,and the experimental control system will be significant in bio-engineering and medical research.
文摘With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.
文摘The interaction between the high pressure gas and the control fluid and the movement mechanism of the control fluid in compound perforation were studied by a series of large-scale experiments, where the movement behavior of the control fluid was observed. The curves of measured pressure were analyzed, a mathematical model for the rigid movement of the control fluid was established, and the movement velocity of control fluid was analyzed. Moreover, the velocity from experimental results and velocity from an analytical solution were contrasted. The movement of the control fluid in the initial stage was similar to the rigid movement; however, the propagation of the pressure wave in the control fluid should be taken into account. Experimental results are significant for research on the movement mechanism of control fluid in compound perforation.
基金supported by National Science and Technology Major Project(No.J2019-II-0014-0035)。
文摘Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.